人工智能治疗青光眼。

IF 8.8 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Kalyan Vemulapalli, Rishikesh Gandhewar, Atika Safitri, Sueko M Ng, Manuele Michelessi, Augusto Azuara-Blanco, Su-Hsun Liu, Gianni Virgili, Kuang Hu
{"title":"人工智能治疗青光眼。","authors":"Kalyan Vemulapalli, Rishikesh Gandhewar, Atika Safitri, Sueko M Ng, Manuele Michelessi, Augusto Azuara-Blanco, Su-Hsun Liu, Gianni Virgili, Kuang Hu","doi":"10.1002/14651858.CD016114","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This is a protocol for a Cochrane Review (diagnostic). The objectives are as follows: To determine the accuracy of artificial intelligence (AI) algorithms as a diagnostic tool for glaucoma compared with human graders in a community or secondary care setting. Secondary objectives To compare the performance of different AI algorithms in the diagnosis of glaucoma To explore other potential causes of heterogeneity in the diagnostic performance compared with human graders, using subgroup analysis of the following characteristics: Clinical setting in which the test is used (the general population in the community versus people referred to secondary care); Study design (studies enroling consecutive participants in the same setting versus multicentre registries and public databases); Characteristics of the population (age according to quartiles, sex, symptomatic versus asymptomatic), when sufficient data are available; Prevalence of glaucoma in the training and test sets (< 5% versus ≥ 5%), since sensitivity and specificity may depend on disease prevalence [17]; Severity of glaucoma; Core AI method used (neural networks, random forests, support vector machines, or others); Size of the dataset from which performance data were collected (< 1000 versus ≥ 1000 total unique participants); Modalities of input data for the AI algorithms (imaging data, visual fields, clinical parameters, or any combination), particularly as their accessibility and affordability may vary across different settings.</p>","PeriodicalId":10473,"journal":{"name":"Cochrane Database of Systematic Reviews","volume":"6 ","pages":"CD016114"},"PeriodicalIF":8.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence for glaucoma.\",\"authors\":\"Kalyan Vemulapalli, Rishikesh Gandhewar, Atika Safitri, Sueko M Ng, Manuele Michelessi, Augusto Azuara-Blanco, Su-Hsun Liu, Gianni Virgili, Kuang Hu\",\"doi\":\"10.1002/14651858.CD016114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This is a protocol for a Cochrane Review (diagnostic). The objectives are as follows: To determine the accuracy of artificial intelligence (AI) algorithms as a diagnostic tool for glaucoma compared with human graders in a community or secondary care setting. Secondary objectives To compare the performance of different AI algorithms in the diagnosis of glaucoma To explore other potential causes of heterogeneity in the diagnostic performance compared with human graders, using subgroup analysis of the following characteristics: Clinical setting in which the test is used (the general population in the community versus people referred to secondary care); Study design (studies enroling consecutive participants in the same setting versus multicentre registries and public databases); Characteristics of the population (age according to quartiles, sex, symptomatic versus asymptomatic), when sufficient data are available; Prevalence of glaucoma in the training and test sets (< 5% versus ≥ 5%), since sensitivity and specificity may depend on disease prevalence [17]; Severity of glaucoma; Core AI method used (neural networks, random forests, support vector machines, or others); Size of the dataset from which performance data were collected (< 1000 versus ≥ 1000 total unique participants); Modalities of input data for the AI algorithms (imaging data, visual fields, clinical parameters, or any combination), particularly as their accessibility and affordability may vary across different settings.</p>\",\"PeriodicalId\":10473,\"journal\":{\"name\":\"Cochrane Database of Systematic Reviews\",\"volume\":\"6 \",\"pages\":\"CD016114\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cochrane Database of Systematic Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/14651858.CD016114\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cochrane Database of Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/14651858.CD016114","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:这是Cochrane综述(诊断)的一份方案。目的如下:确定人工智能(AI)算法作为青光眼诊断工具的准确性,并与社区或二级医疗机构的人类评分者进行比较。次要目的:比较不同人工智能算法在青光眼诊断中的表现,通过对以下特征的亚组分析,探索与人类评分者相比,诊断表现异质性的其他潜在原因:使用该测试的临床环境(社区中的一般人群与转诊到二级医疗机构的人群);研究设计(在相同环境下连续招募参与者的研究与多中心登记和公共数据库的研究);人口特征(按四分位数划分的年龄、性别、有症状与无症状),如果有足够的数据;训练组和测试组青光眼的患病率(< 5% vs≥5%),因为敏感性和特异性可能取决于疾病患病率[17];青光眼严重程度;使用的核心AI方法(神经网络、随机森林、支持向量机等);收集性能数据的数据集的大小(< 1000 vs≥1000个唯一参与者);人工智能算法输入数据的模式(成像数据、视野、临床参数或任何组合),特别是因为它们的可访问性和可负担性在不同的环境中可能有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence for glaucoma.

Objectives: This is a protocol for a Cochrane Review (diagnostic). The objectives are as follows: To determine the accuracy of artificial intelligence (AI) algorithms as a diagnostic tool for glaucoma compared with human graders in a community or secondary care setting. Secondary objectives To compare the performance of different AI algorithms in the diagnosis of glaucoma To explore other potential causes of heterogeneity in the diagnostic performance compared with human graders, using subgroup analysis of the following characteristics: Clinical setting in which the test is used (the general population in the community versus people referred to secondary care); Study design (studies enroling consecutive participants in the same setting versus multicentre registries and public databases); Characteristics of the population (age according to quartiles, sex, symptomatic versus asymptomatic), when sufficient data are available; Prevalence of glaucoma in the training and test sets (< 5% versus ≥ 5%), since sensitivity and specificity may depend on disease prevalence [17]; Severity of glaucoma; Core AI method used (neural networks, random forests, support vector machines, or others); Size of the dataset from which performance data were collected (< 1000 versus ≥ 1000 total unique participants); Modalities of input data for the AI algorithms (imaging data, visual fields, clinical parameters, or any combination), particularly as their accessibility and affordability may vary across different settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.60
自引率
2.40%
发文量
173
审稿时长
1-2 weeks
期刊介绍: The Cochrane Database of Systematic Reviews (CDSR) stands as the premier database for systematic reviews in healthcare. It comprises Cochrane Reviews, along with protocols for these reviews, editorials, and supplements. Owned and operated by Cochrane, a worldwide independent network of healthcare stakeholders, the CDSR (ISSN 1469-493X) encompasses a broad spectrum of health-related topics, including health services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信