Jake A. Odger, Matthew J. Anderson, Thomas P. Carton, Bao Nguyen, Kevin Foote and Michael J. Waring
{"title":"胶束的改进促进了表面活性剂优化dna编码文库的合成。","authors":"Jake A. Odger, Matthew J. Anderson, Thomas P. Carton, Bao Nguyen, Kevin Foote and Michael J. Waring","doi":"10.1039/D5OB00864F","DOIUrl":null,"url":null,"abstract":"<p >DNA-encoded libraries are increasingly important in hit identification at the early stage of the drug discovery process. The approach relies on efficient methods for synthesis of drug-like compounds attached to coding DNA sequences. Many reactions employed for library synthesis are inefficient and result in significant DNA-damage, incomplete conversion and the formation of side products, which compromise the fidelity of the resulting library. We have developed a wide array of reactions that are promoted by the micelle-forming surfactant TPGS-750-M that address these issues and lead to improved efficiency. Here we demonstrate further improvements to key reactions Suzuki–Miyaura coupling, reductive amination and amide coupling by surfactant screening using principal component-based surfactant maps which lead to improved conversion for problematic substrates. This work demonstrates the utility of surfactant maps in reaction optimisation for DNA-encoded library synthesis and leads to further improvements in these important transformations.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" 28","pages":" 6745-6754"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175057/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvements in micelle promoted DNA-encoded library synthesis by surfactant optimisation†\",\"authors\":\"Jake A. Odger, Matthew J. Anderson, Thomas P. Carton, Bao Nguyen, Kevin Foote and Michael J. Waring\",\"doi\":\"10.1039/D5OB00864F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >DNA-encoded libraries are increasingly important in hit identification at the early stage of the drug discovery process. The approach relies on efficient methods for synthesis of drug-like compounds attached to coding DNA sequences. Many reactions employed for library synthesis are inefficient and result in significant DNA-damage, incomplete conversion and the formation of side products, which compromise the fidelity of the resulting library. We have developed a wide array of reactions that are promoted by the micelle-forming surfactant TPGS-750-M that address these issues and lead to improved efficiency. Here we demonstrate further improvements to key reactions Suzuki–Miyaura coupling, reductive amination and amide coupling by surfactant screening using principal component-based surfactant maps which lead to improved conversion for problematic substrates. This work demonstrates the utility of surfactant maps in reaction optimisation for DNA-encoded library synthesis and leads to further improvements in these important transformations.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" 28\",\"pages\":\" 6745-6754\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175057/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob00864f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob00864f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Improvements in micelle promoted DNA-encoded library synthesis by surfactant optimisation†
DNA-encoded libraries are increasingly important in hit identification at the early stage of the drug discovery process. The approach relies on efficient methods for synthesis of drug-like compounds attached to coding DNA sequences. Many reactions employed for library synthesis are inefficient and result in significant DNA-damage, incomplete conversion and the formation of side products, which compromise the fidelity of the resulting library. We have developed a wide array of reactions that are promoted by the micelle-forming surfactant TPGS-750-M that address these issues and lead to improved efficiency. Here we demonstrate further improvements to key reactions Suzuki–Miyaura coupling, reductive amination and amide coupling by surfactant screening using principal component-based surfactant maps which lead to improved conversion for problematic substrates. This work demonstrates the utility of surfactant maps in reaction optimisation for DNA-encoded library synthesis and leads to further improvements in these important transformations.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.