{"title":"复杂环境下具有稳定性的车辆轨迹分层描绘","authors":"Zhichao Han, Mengze Tian, Zaitian Gongye, Donglai Xue, Jiaxi Xing, Qianhao Wang, Yuman Gao, Jingping Wang, Chao Xu, Fei Gao","doi":"10.1126/scirobotics.ads4551","DOIUrl":null,"url":null,"abstract":"<div >The rapid development of autonomous robots has resulted in marked societal and economic benefits. However, enabling robots to navigate complex environments with human-like agility remains a formidable challenge. Unlike robots, humans excel at pathfinding because of their superior spatial awareness and their ability to leverage experience. Inspired by these observations, we designed a neural network to simulate the intuitive pathfinding abilities of humans, integrating global environmental information and previous experiences to identify feasible pathways. Experiments demonstrated that, unlike traditional algorithms whose efficiency deteriorates in complex settings, the proposed method maintains stable computational performance. To further enhance motion quality, we introduce a numerically stable spatiotemporal trajectory optimizer with a unique bilayer polynomial trajectory representation in flat space. This optimization leverages differential flatness to enhance efficiency and fundamentally eliminates singularities in the original problem, thereby robustly converging to continuous and feasible motion even in complex maneuvering scenarios. Our hierarchical motion planner, validated through large-scale maze experiments, combines front-end path planning with back-end trajectory refinement, achieving robust and efficient navigation. We anticipate that our planner will advance stable navigation for robots in complex environments, thereby propelling the progress of robotic autonomy.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 103","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchically depicting vehicle trajectory with stability in complex environments\",\"authors\":\"Zhichao Han, Mengze Tian, Zaitian Gongye, Donglai Xue, Jiaxi Xing, Qianhao Wang, Yuman Gao, Jingping Wang, Chao Xu, Fei Gao\",\"doi\":\"10.1126/scirobotics.ads4551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The rapid development of autonomous robots has resulted in marked societal and economic benefits. However, enabling robots to navigate complex environments with human-like agility remains a formidable challenge. Unlike robots, humans excel at pathfinding because of their superior spatial awareness and their ability to leverage experience. Inspired by these observations, we designed a neural network to simulate the intuitive pathfinding abilities of humans, integrating global environmental information and previous experiences to identify feasible pathways. Experiments demonstrated that, unlike traditional algorithms whose efficiency deteriorates in complex settings, the proposed method maintains stable computational performance. To further enhance motion quality, we introduce a numerically stable spatiotemporal trajectory optimizer with a unique bilayer polynomial trajectory representation in flat space. This optimization leverages differential flatness to enhance efficiency and fundamentally eliminates singularities in the original problem, thereby robustly converging to continuous and feasible motion even in complex maneuvering scenarios. Our hierarchical motion planner, validated through large-scale maze experiments, combines front-end path planning with back-end trajectory refinement, achieving robust and efficient navigation. We anticipate that our planner will advance stable navigation for robots in complex environments, thereby propelling the progress of robotic autonomy.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"10 103\",\"pages\":\"\"},\"PeriodicalIF\":27.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.ads4551\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.ads4551","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Hierarchically depicting vehicle trajectory with stability in complex environments
The rapid development of autonomous robots has resulted in marked societal and economic benefits. However, enabling robots to navigate complex environments with human-like agility remains a formidable challenge. Unlike robots, humans excel at pathfinding because of their superior spatial awareness and their ability to leverage experience. Inspired by these observations, we designed a neural network to simulate the intuitive pathfinding abilities of humans, integrating global environmental information and previous experiences to identify feasible pathways. Experiments demonstrated that, unlike traditional algorithms whose efficiency deteriorates in complex settings, the proposed method maintains stable computational performance. To further enhance motion quality, we introduce a numerically stable spatiotemporal trajectory optimizer with a unique bilayer polynomial trajectory representation in flat space. This optimization leverages differential flatness to enhance efficiency and fundamentally eliminates singularities in the original problem, thereby robustly converging to continuous and feasible motion even in complex maneuvering scenarios. Our hierarchical motion planner, validated through large-scale maze experiments, combines front-end path planning with back-end trajectory refinement, achieving robust and efficient navigation. We anticipate that our planner will advance stable navigation for robots in complex environments, thereby propelling the progress of robotic autonomy.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.