由自旋交换相互作用控制的高度对映选择性合成

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yong Yan, Melad Shaikh, Matthew C. Beard, Jing Gu, Isaac Hendrix
{"title":"由自旋交换相互作用控制的高度对映选择性合成","authors":"Yong Yan,&nbsp;Melad Shaikh,&nbsp;Matthew C. Beard,&nbsp;Jing Gu,&nbsp;Isaac Hendrix","doi":"10.1126/sciadv.adw5850","DOIUrl":null,"url":null,"abstract":"<div >We present a strategy to achieve absolute asymmetric catalysis that is effectively controlled by an external magnetic field via a spin-exchange reaction leveraging the chirality-induced spin selectivity effect. Using an external magnetic field to achieve asymmetric synthesis has long been desired. Here, we demonstrate 90% enantiomeric excess (ee) in [3 + 2] cycloadditions and 89% ee in aldol reactions, where the handedness of the product is determined by the ~±150 mT external magnetic polarization of a ferromagnet (FM). Our approach uses an enantioselective crystallization of racemic catalysts on a FM surface, using a small-scale crystallization vial connected to a bulk racemic solution. Racemic catalysts controllably crystallize into their respective enantiopure forms and are directly used in asymmetric reactions. Thus, we demonstrate that an external magnetic field can serve as a versatile symmetry-breaking tool to achieve highly enantioselective organic synthesis eliminating the need of any enantioenriched reagents.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 25","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw5850","citationCount":"0","resultStr":"{\"title\":\"Highly enantioselective synthesis controlled by spin-exchange interaction\",\"authors\":\"Yong Yan,&nbsp;Melad Shaikh,&nbsp;Matthew C. Beard,&nbsp;Jing Gu,&nbsp;Isaac Hendrix\",\"doi\":\"10.1126/sciadv.adw5850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >We present a strategy to achieve absolute asymmetric catalysis that is effectively controlled by an external magnetic field via a spin-exchange reaction leveraging the chirality-induced spin selectivity effect. Using an external magnetic field to achieve asymmetric synthesis has long been desired. Here, we demonstrate 90% enantiomeric excess (ee) in [3 + 2] cycloadditions and 89% ee in aldol reactions, where the handedness of the product is determined by the ~±150 mT external magnetic polarization of a ferromagnet (FM). Our approach uses an enantioselective crystallization of racemic catalysts on a FM surface, using a small-scale crystallization vial connected to a bulk racemic solution. Racemic catalysts controllably crystallize into their respective enantiopure forms and are directly used in asymmetric reactions. Thus, we demonstrate that an external magnetic field can serve as a versatile symmetry-breaking tool to achieve highly enantioselective organic synthesis eliminating the need of any enantioenriched reagents.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 25\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw5850\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw5850\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw5850","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种策略来实现绝对不对称催化,这种催化是通过利用手性诱导的自旋选择性效应,通过自旋交换反应有效地由外部磁场控制的。利用外部磁场来实现不对称合成一直是人们所期望的。在这里,我们证明了在[3 + 2]环加成反应中90%的对映体过量(ee)和在醛醇反应中89%的ee,其中产物的手性是由铁磁体(FM)的~±150 mT外磁极化决定的。我们的方法在FM表面上使用外消旋催化剂的对映选择性结晶,使用小型结晶瓶连接到散装外消旋溶液。外消旋催化剂可可控地结晶成各自的对映纯形式,并直接用于不对称反应。因此,我们证明了外部磁场可以作为一种通用的对称性破坏工具,以实现高度对映选择性有机合成,而无需任何对映体富集试剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly enantioselective synthesis controlled by spin-exchange interaction

Highly enantioselective synthesis controlled by spin-exchange interaction
We present a strategy to achieve absolute asymmetric catalysis that is effectively controlled by an external magnetic field via a spin-exchange reaction leveraging the chirality-induced spin selectivity effect. Using an external magnetic field to achieve asymmetric synthesis has long been desired. Here, we demonstrate 90% enantiomeric excess (ee) in [3 + 2] cycloadditions and 89% ee in aldol reactions, where the handedness of the product is determined by the ~±150 mT external magnetic polarization of a ferromagnet (FM). Our approach uses an enantioselective crystallization of racemic catalysts on a FM surface, using a small-scale crystallization vial connected to a bulk racemic solution. Racemic catalysts controllably crystallize into their respective enantiopure forms and are directly used in asymmetric reactions. Thus, we demonstrate that an external magnetic field can serve as a versatile symmetry-breaking tool to achieve highly enantioselective organic synthesis eliminating the need of any enantioenriched reagents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信