片上非晶太赫兹拓扑光子互连

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rimi Banerjee, Abhishek Kumar, Thomas Caiwei Tan, Manoj Gupta, Ridong Jia, Pascal Szriftgiser, Guillaume Ducournau, Yidong Chong, Ranjan Singh
{"title":"片上非晶太赫兹拓扑光子互连","authors":"Rimi Banerjee,&nbsp;Abhishek Kumar,&nbsp;Thomas Caiwei Tan,&nbsp;Manoj Gupta,&nbsp;Ridong Jia,&nbsp;Pascal Szriftgiser,&nbsp;Guillaume Ducournau,&nbsp;Yidong Chong,&nbsp;Ranjan Singh","doi":"10.1126/sciadv.adu2526","DOIUrl":null,"url":null,"abstract":"<div >Valley Hall photonic crystals (VPCs) offer the potential for creating topological waveguides capable of guiding light through sharp bends on a chip, enabling seamless integration with functional components in compact spaces, making them a promising technology for terahertz topological photonic integrated circuits. However, a key limitation for terahertz-scale integrated VPC-based devices has been the absence of arbitrary bend interconnects, as traditional VPC-designs restricted to principal lattice axes (i.e., only 0°, 60°, or 120°) due to crystalline symmetry. Here, we present an on-chip, all-silicon implementation of deformed VPCs that enable robust transmission along arbitrary shapes and bends. Although the lattice is amorphous and lacks long-range periodicity, the topological protection is sustained by short-range order. Furthermore, we show an amorphous lattice functioning as a frequency-dependent router, splitting input signals into two perpendicular output ports. We also demonstrate on-chip terahertz communication, achieving data rates of up to 72 Gbps. Our findings show that amorphous topological photonic crystals enhance interconnect adaptability while preserving performance.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 25","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu2526","citationCount":"0","resultStr":"{\"title\":\"On-chip amorphous terahertz topological photonic interconnects\",\"authors\":\"Rimi Banerjee,&nbsp;Abhishek Kumar,&nbsp;Thomas Caiwei Tan,&nbsp;Manoj Gupta,&nbsp;Ridong Jia,&nbsp;Pascal Szriftgiser,&nbsp;Guillaume Ducournau,&nbsp;Yidong Chong,&nbsp;Ranjan Singh\",\"doi\":\"10.1126/sciadv.adu2526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Valley Hall photonic crystals (VPCs) offer the potential for creating topological waveguides capable of guiding light through sharp bends on a chip, enabling seamless integration with functional components in compact spaces, making them a promising technology for terahertz topological photonic integrated circuits. However, a key limitation for terahertz-scale integrated VPC-based devices has been the absence of arbitrary bend interconnects, as traditional VPC-designs restricted to principal lattice axes (i.e., only 0°, 60°, or 120°) due to crystalline symmetry. Here, we present an on-chip, all-silicon implementation of deformed VPCs that enable robust transmission along arbitrary shapes and bends. Although the lattice is amorphous and lacks long-range periodicity, the topological protection is sustained by short-range order. Furthermore, we show an amorphous lattice functioning as a frequency-dependent router, splitting input signals into two perpendicular output ports. We also demonstrate on-chip terahertz communication, achieving data rates of up to 72 Gbps. Our findings show that amorphous topological photonic crystals enhance interconnect adaptability while preserving performance.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 25\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu2526\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu2526\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu2526","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

谷霍尔光子晶体(VPCs)提供了创造拓扑波导的潜力,能够引导光通过芯片上的尖锐弯曲,使其与紧凑空间中的功能组件无缝集成,使其成为太赫兹拓扑光子集成电路的一种有前途的技术。然而,太赫兹规模集成的基于vpc的器件的一个关键限制是缺乏任意弯曲互连,因为传统的vpc设计由于晶体对称性而限制在主晶格轴(即只有0°,60°或120°)。在这里,我们提出了一种变形vpc的片上全硅实现,使其能够沿任意形状和弯曲进行稳健传输。虽然晶格是无定形的,缺乏长程周期性,但拓扑保护是由短程有序维持的。此外,我们展示了一个非晶晶格作为频率依赖路由器的功能,将输入信号分成两个垂直的输出端口。我们还演示了片上太赫兹通信,实现了高达72 Gbps的数据速率。我们的研究结果表明,非晶拓扑光子晶体在保持性能的同时增强了互连适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On-chip amorphous terahertz topological photonic interconnects

On-chip amorphous terahertz topological photonic interconnects
Valley Hall photonic crystals (VPCs) offer the potential for creating topological waveguides capable of guiding light through sharp bends on a chip, enabling seamless integration with functional components in compact spaces, making them a promising technology for terahertz topological photonic integrated circuits. However, a key limitation for terahertz-scale integrated VPC-based devices has been the absence of arbitrary bend interconnects, as traditional VPC-designs restricted to principal lattice axes (i.e., only 0°, 60°, or 120°) due to crystalline symmetry. Here, we present an on-chip, all-silicon implementation of deformed VPCs that enable robust transmission along arbitrary shapes and bends. Although the lattice is amorphous and lacks long-range periodicity, the topological protection is sustained by short-range order. Furthermore, we show an amorphous lattice functioning as a frequency-dependent router, splitting input signals into two perpendicular output ports. We also demonstrate on-chip terahertz communication, achieving data rates of up to 72 Gbps. Our findings show that amorphous topological photonic crystals enhance interconnect adaptability while preserving performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信