用于高容量DNA数据存储的光子微球:通过非衰落索引进行鲁棒、直接和可扩展的随机访问

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qiu-Jun Liu, Qian Liu, Jie Zhang, Cheng Zhang, Long Qian, Hao Qi, Yue-Sheng Li, Dong-Po Song
{"title":"用于高容量DNA数据存储的光子微球:通过非衰落索引进行鲁棒、直接和可扩展的随机访问","authors":"Qiu-Jun Liu,&nbsp;Qian Liu,&nbsp;Jie Zhang,&nbsp;Cheng Zhang,&nbsp;Long Qian,&nbsp;Hao Qi,&nbsp;Yue-Sheng Li,&nbsp;Dong-Po Song","doi":"10.1126/sciadv.adw2613","DOIUrl":null,"url":null,"abstract":"<div >DNA-based storage offers a compelling alternative to traditional optical and magnetic devices. However, random data access usually requires additional noncoding primer DNA as indexes, which substantially reduce the physical data density. Here, we propose an alternative strategy to overcome this barrier by loading different data-encoding DNA files into porous microspheres, each distinguished by unique photonic bandgaps and diameters, allowing for 10<sup>5</sup> types of indexing. With the two features as the addressing indexes, the physical separation of subsets from a diverse pool of DNA files is achieved, thereby facilitating the selective retrieval of stored data. The interconnected nanopore arrays and uniformly distributed positive charges within the microspheres enhance DNA enrichment, achieving a storage density of up to 22.6 exabytes per gram, far exceeding that of previous random access storage methods. This work outlines a simple and scalable method for creating nonfading photonic indexes, enabling long-term random access while maintaining high storage capacity.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 25","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw2613","citationCount":"0","resultStr":"{\"title\":\"Photonic microspheres for high-capacity DNA data storage: Robust, straightforward, and scalable random access via nonfading indexes\",\"authors\":\"Qiu-Jun Liu,&nbsp;Qian Liu,&nbsp;Jie Zhang,&nbsp;Cheng Zhang,&nbsp;Long Qian,&nbsp;Hao Qi,&nbsp;Yue-Sheng Li,&nbsp;Dong-Po Song\",\"doi\":\"10.1126/sciadv.adw2613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >DNA-based storage offers a compelling alternative to traditional optical and magnetic devices. However, random data access usually requires additional noncoding primer DNA as indexes, which substantially reduce the physical data density. Here, we propose an alternative strategy to overcome this barrier by loading different data-encoding DNA files into porous microspheres, each distinguished by unique photonic bandgaps and diameters, allowing for 10<sup>5</sup> types of indexing. With the two features as the addressing indexes, the physical separation of subsets from a diverse pool of DNA files is achieved, thereby facilitating the selective retrieval of stored data. The interconnected nanopore arrays and uniformly distributed positive charges within the microspheres enhance DNA enrichment, achieving a storage density of up to 22.6 exabytes per gram, far exceeding that of previous random access storage methods. This work outlines a simple and scalable method for creating nonfading photonic indexes, enabling long-term random access while maintaining high storage capacity.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 25\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw2613\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw2613\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw2613","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于dna的存储为传统的光学和磁性设备提供了一个令人信服的替代方案。然而,随机数据访问通常需要额外的非编码引物DNA作为索引,这大大降低了物理数据密度。在这里,我们提出了一种替代策略,通过将不同的数据编码DNA文件加载到多孔微球中来克服这一障碍,每个微球都有独特的光子带隙和直径,允许105种类型的索引。利用这两个特征作为寻址索引,实现了从不同的DNA文件池中对子集的物理分离,从而方便了对存储数据的选择性检索。微球内相互连接的纳米孔阵列和均匀分布的正电荷增强了DNA的富集,实现了高达22.6艾字节/克的存储密度,远远超过了以前的随机存取存储方法。这项工作概述了一种简单且可扩展的方法来创建非衰落光子索引,在保持高存储容量的同时实现长期随机访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photonic microspheres for high-capacity DNA data storage: Robust, straightforward, and scalable random access via nonfading indexes

Photonic microspheres for high-capacity DNA data storage: Robust, straightforward, and scalable random access via nonfading indexes
DNA-based storage offers a compelling alternative to traditional optical and magnetic devices. However, random data access usually requires additional noncoding primer DNA as indexes, which substantially reduce the physical data density. Here, we propose an alternative strategy to overcome this barrier by loading different data-encoding DNA files into porous microspheres, each distinguished by unique photonic bandgaps and diameters, allowing for 105 types of indexing. With the two features as the addressing indexes, the physical separation of subsets from a diverse pool of DNA files is achieved, thereby facilitating the selective retrieval of stored data. The interconnected nanopore arrays and uniformly distributed positive charges within the microspheres enhance DNA enrichment, achieving a storage density of up to 22.6 exabytes per gram, far exceeding that of previous random access storage methods. This work outlines a simple and scalable method for creating nonfading photonic indexes, enabling long-term random access while maintaining high storage capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信