人工智能提高大陆尺度洪水预测的准确性、可靠性和经济价值

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-06-19 DOI:10.1029/2025AV001678
Vinh Ngoc Tran, Taeho Kim, Donghui Xu, Hoang Tran, Manh-Hung Le, Thanh-Nhan-Duc Tran, Jongho Kim, Trung Duc Tran, Daniel B. Wright, Pedro Restrepo, Valeriy Y. Ivanov
{"title":"人工智能提高大陆尺度洪水预测的准确性、可靠性和经济价值","authors":"Vinh Ngoc Tran,&nbsp;Taeho Kim,&nbsp;Donghui Xu,&nbsp;Hoang Tran,&nbsp;Manh-Hung Le,&nbsp;Thanh-Nhan-Duc Tran,&nbsp;Jongho Kim,&nbsp;Trung Duc Tran,&nbsp;Daniel B. Wright,&nbsp;Pedro Restrepo,&nbsp;Valeriy Y. Ivanov","doi":"10.1029/2025AV001678","DOIUrl":null,"url":null,"abstract":"<p>Accurate flood early warnings are critical to minimize damage and loss of life. Current large-scale operational forecasting systems, however, have limited accuracy, description of uncertainty, and computational efficiency. While Artificial intelligence (AI) can address these limitations in principle, the accuracy and reliability of AI forecasts have thus far proven insufficient. Here we present a novel hybrid framework that integrates AI-based machinery termed Errorcastnet (ECN) with the National Water Model (NWM) to showcase the potential of ensemble AI flood forecasts over the contiguous U.S. ECN boosts prediction accuracy four- to six-fold across lead times of 1–10 days, while providing uncertainty quantification. It also outperforms Google's state-of-the-art global AI model. ECN-based forecasts offer superior economic value (up to four-fold) for decision-making as compared to those from NWM alone. ECN performs well in varied ecoregions, physiography, and land management conditions. The framework is computationally efficient, enabling national-scale ensemble forecasts in minutes.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 3","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001678","citationCount":"0","resultStr":"{\"title\":\"AI Improves the Accuracy, Reliability, and Economic Value of Continental-Scale Flood Predictions\",\"authors\":\"Vinh Ngoc Tran,&nbsp;Taeho Kim,&nbsp;Donghui Xu,&nbsp;Hoang Tran,&nbsp;Manh-Hung Le,&nbsp;Thanh-Nhan-Duc Tran,&nbsp;Jongho Kim,&nbsp;Trung Duc Tran,&nbsp;Daniel B. Wright,&nbsp;Pedro Restrepo,&nbsp;Valeriy Y. Ivanov\",\"doi\":\"10.1029/2025AV001678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate flood early warnings are critical to minimize damage and loss of life. Current large-scale operational forecasting systems, however, have limited accuracy, description of uncertainty, and computational efficiency. While Artificial intelligence (AI) can address these limitations in principle, the accuracy and reliability of AI forecasts have thus far proven insufficient. Here we present a novel hybrid framework that integrates AI-based machinery termed Errorcastnet (ECN) with the National Water Model (NWM) to showcase the potential of ensemble AI flood forecasts over the contiguous U.S. ECN boosts prediction accuracy four- to six-fold across lead times of 1–10 days, while providing uncertainty quantification. It also outperforms Google's state-of-the-art global AI model. ECN-based forecasts offer superior economic value (up to four-fold) for decision-making as compared to those from NWM alone. ECN performs well in varied ecoregions, physiography, and land management conditions. The framework is computationally efficient, enabling national-scale ensemble forecasts in minutes.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001678\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确的洪水预警对于尽量减少损失和生命损失至关重要。然而,目前的大规模业务预测系统具有有限的准确性、不确定性描述和计算效率。虽然人工智能(AI)原则上可以解决这些限制,但迄今为止,人工智能预测的准确性和可靠性还不够。在这里,我们提出了一个新的混合框架,将基于人工智能的机器称为Errorcastnet (ECN)与国家水模型(NWM)集成在一起,以展示在美国连续的ECN上集成人工智能洪水预报的潜力,在1-10天的交货时间内将预测精度提高4到6倍,同时提供不确定性量化。它也优于b谷歌最先进的全球人工智能模型。与仅来自NWM的预测相比,基于ecn的预测为决策提供了更高的经济价值(高达四倍)。ECN在不同的生态区域、地理和土地管理条件下表现良好。该框架计算效率高,可在几分钟内实现全国范围的综合预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI Improves the Accuracy, Reliability, and Economic Value of Continental-Scale Flood Predictions

Accurate flood early warnings are critical to minimize damage and loss of life. Current large-scale operational forecasting systems, however, have limited accuracy, description of uncertainty, and computational efficiency. While Artificial intelligence (AI) can address these limitations in principle, the accuracy and reliability of AI forecasts have thus far proven insufficient. Here we present a novel hybrid framework that integrates AI-based machinery termed Errorcastnet (ECN) with the National Water Model (NWM) to showcase the potential of ensemble AI flood forecasts over the contiguous U.S. ECN boosts prediction accuracy four- to six-fold across lead times of 1–10 days, while providing uncertainty quantification. It also outperforms Google's state-of-the-art global AI model. ECN-based forecasts offer superior economic value (up to four-fold) for decision-making as compared to those from NWM alone. ECN performs well in varied ecoregions, physiography, and land management conditions. The framework is computationally efficient, enabling national-scale ensemble forecasts in minutes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信