二胺分子结构对烟气相变CO2捕集的影响

IF 2.8 4区 环境科学与生态学 Q3 ENERGY & FUELS
Ziyong Li, Qingdan Huang, Tingyan Wang, Huihong Huang, Haoyong Song
{"title":"二胺分子结构对烟气相变CO2捕集的影响","authors":"Ziyong Li,&nbsp;Qingdan Huang,&nbsp;Tingyan Wang,&nbsp;Huihong Huang,&nbsp;Haoyong Song","doi":"10.1002/ghg.2347","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The amino groups and its substituents of organic amine absorbents have an important influence on the CO<sub>2</sub> absorption and desorption performance. In this study, four diamines with the same primary amino group and another different amino groups were selected as absorbents, including 1,3-propanediamine (1,3-PDA), 3-methylaminopropylamine (MAPA), 3-dimethylaminopropylamine (DMAPA), and 3-diethylaminopropylamine (DEAPA). The phase-change absorption system uses a mixture of polyether and H<sub>2</sub>O as the solvent. The CO<sub>2</sub> absorption performance of flue gas was studied with the analysis on absorption and desorption rate, cycle capacity, and desorption ratio. The effect of diamine molecular structures on phase-change CO<sub>2</sub> capture was investigated by nuclear magnetic carbon spectroscopy. The results show that DEAPA exhibits highest absorption capacity of 1.21 mol CO<sub>2</sub>/mol amine and recycling capacity of 1.09 mol CO<sub>2</sub>/mol amine. The absorption rate of primary and secondary diamines in the phase-change system is significantly higher than that of primary and tertiary diamines. The diamine system with tertiary amino groups has significantly faster desorption rate, higher desorption ratio, and cycle capacity than the primary and secondary diamine systems. The intramolecular tertiary amino group is more conducive to promoting the absorption of CO<sub>2</sub> than the intermolecular tertiary amino group, which can increase the absorption rate of CO<sub>2</sub> by the primary amino group and enhance the CO<sub>2</sub> desorption.</p>\n </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 3","pages":"346-356"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of Diamine Molecular Structures on the Phase-Change CO2 Capture From Flue Gas\",\"authors\":\"Ziyong Li,&nbsp;Qingdan Huang,&nbsp;Tingyan Wang,&nbsp;Huihong Huang,&nbsp;Haoyong Song\",\"doi\":\"10.1002/ghg.2347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The amino groups and its substituents of organic amine absorbents have an important influence on the CO<sub>2</sub> absorption and desorption performance. In this study, four diamines with the same primary amino group and another different amino groups were selected as absorbents, including 1,3-propanediamine (1,3-PDA), 3-methylaminopropylamine (MAPA), 3-dimethylaminopropylamine (DMAPA), and 3-diethylaminopropylamine (DEAPA). The phase-change absorption system uses a mixture of polyether and H<sub>2</sub>O as the solvent. The CO<sub>2</sub> absorption performance of flue gas was studied with the analysis on absorption and desorption rate, cycle capacity, and desorption ratio. The effect of diamine molecular structures on phase-change CO<sub>2</sub> capture was investigated by nuclear magnetic carbon spectroscopy. The results show that DEAPA exhibits highest absorption capacity of 1.21 mol CO<sub>2</sub>/mol amine and recycling capacity of 1.09 mol CO<sub>2</sub>/mol amine. The absorption rate of primary and secondary diamines in the phase-change system is significantly higher than that of primary and tertiary diamines. The diamine system with tertiary amino groups has significantly faster desorption rate, higher desorption ratio, and cycle capacity than the primary and secondary diamine systems. The intramolecular tertiary amino group is more conducive to promoting the absorption of CO<sub>2</sub> than the intermolecular tertiary amino group, which can increase the absorption rate of CO<sub>2</sub> by the primary amino group and enhance the CO<sub>2</sub> desorption.</p>\\n </div>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"15 3\",\"pages\":\"346-356\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2347\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2347","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

有机胺吸附剂的氨基及其取代基对CO2的吸收和解吸性能有重要影响。本研究选取具有相同初级氨基和不同氨基的4种二胺作为吸附剂,分别为1,3-丙二胺(1,3- pda)、3-甲氨基丙胺(MAPA)、3-二甲氨基丙胺(DMAPA)和3-二乙基氨基丙胺(DEAPA)。相变吸收系统采用聚醚和水的混合物作为溶剂。从吸解吸速率、循环容量、解吸比等方面对烟气的CO2吸收性能进行了研究。采用核磁碳谱法研究了二胺分子结构对CO2相变捕集的影响。结果表明,DEAPA具有最高的吸收能力为1.21 mol CO2/mol胺,再循环能力为1.09 mol CO2/mol胺。相变体系中伯胺和仲胺的吸收率明显高于伯胺和叔胺的吸收率。具有叔胺基的二胺体系比伯胺和仲胺体系具有更快的脱附速率、更高的脱附率和更高的循环容量。分子内叔氨基比分子间叔氨基更有利于促进CO2的吸收,这可以提高主氨基对CO2的吸收率,增强CO2的解吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influences of Diamine Molecular Structures on the Phase-Change CO2 Capture From Flue Gas

The amino groups and its substituents of organic amine absorbents have an important influence on the CO2 absorption and desorption performance. In this study, four diamines with the same primary amino group and another different amino groups were selected as absorbents, including 1,3-propanediamine (1,3-PDA), 3-methylaminopropylamine (MAPA), 3-dimethylaminopropylamine (DMAPA), and 3-diethylaminopropylamine (DEAPA). The phase-change absorption system uses a mixture of polyether and H2O as the solvent. The CO2 absorption performance of flue gas was studied with the analysis on absorption and desorption rate, cycle capacity, and desorption ratio. The effect of diamine molecular structures on phase-change CO2 capture was investigated by nuclear magnetic carbon spectroscopy. The results show that DEAPA exhibits highest absorption capacity of 1.21 mol CO2/mol amine and recycling capacity of 1.09 mol CO2/mol amine. The absorption rate of primary and secondary diamines in the phase-change system is significantly higher than that of primary and tertiary diamines. The diamine system with tertiary amino groups has significantly faster desorption rate, higher desorption ratio, and cycle capacity than the primary and secondary diamine systems. The intramolecular tertiary amino group is more conducive to promoting the absorption of CO2 than the intermolecular tertiary amino group, which can increase the absorption rate of CO2 by the primary amino group and enhance the CO2 desorption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信