{"title":"干膜光刻胶掩模制备Si和III-V化合物的等离子体化学原型","authors":"Etienne Herth, David Bouville, Samson Edmond","doi":"10.1002/ctpp.202400050","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fast and reliable plasma chemistry plays a crucial role in the fabrication of micro- and nanoscale structures in numerous applications. In this work, we demonstrated that fast and optimal etch chemistry using an inductively coupled plasma (ICP) system in combination with a simple and cost-effective dry film photoresist (DFR) as a mask transfer. The results show that the proposed DFR, which simultaneously removes the edge bead and air bubbles, can be successfully used in chlorinated and fluorinated chemistries, resulting in fast etching rates and good selectivity from 5:1 to 16:1 for GaAs and from 30:1 to 150:1 for silicon substrates. This solution offers the promise of drastically cutting down microfabrication time and minimizing contamination. It could pave the way for a novel, rapid manufacturing process that is applicable in various fields, regardless of the size or shape of the substrate.</p>\n </div>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototyping of Si and III–V Compounds by Plasma Chemistry Using Dry Film Photoresist Mask\",\"authors\":\"Etienne Herth, David Bouville, Samson Edmond\",\"doi\":\"10.1002/ctpp.202400050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Fast and reliable plasma chemistry plays a crucial role in the fabrication of micro- and nanoscale structures in numerous applications. In this work, we demonstrated that fast and optimal etch chemistry using an inductively coupled plasma (ICP) system in combination with a simple and cost-effective dry film photoresist (DFR) as a mask transfer. The results show that the proposed DFR, which simultaneously removes the edge bead and air bubbles, can be successfully used in chlorinated and fluorinated chemistries, resulting in fast etching rates and good selectivity from 5:1 to 16:1 for GaAs and from 30:1 to 150:1 for silicon substrates. This solution offers the promise of drastically cutting down microfabrication time and minimizing contamination. It could pave the way for a novel, rapid manufacturing process that is applicable in various fields, regardless of the size or shape of the substrate.</p>\\n </div>\",\"PeriodicalId\":10700,\"journal\":{\"name\":\"Contributions to Plasma Physics\",\"volume\":\"65 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400050\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400050","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Prototyping of Si and III–V Compounds by Plasma Chemistry Using Dry Film Photoresist Mask
Fast and reliable plasma chemistry plays a crucial role in the fabrication of micro- and nanoscale structures in numerous applications. In this work, we demonstrated that fast and optimal etch chemistry using an inductively coupled plasma (ICP) system in combination with a simple and cost-effective dry film photoresist (DFR) as a mask transfer. The results show that the proposed DFR, which simultaneously removes the edge bead and air bubbles, can be successfully used in chlorinated and fluorinated chemistries, resulting in fast etching rates and good selectivity from 5:1 to 16:1 for GaAs and from 30:1 to 150:1 for silicon substrates. This solution offers the promise of drastically cutting down microfabrication time and minimizing contamination. It could pave the way for a novel, rapid manufacturing process that is applicable in various fields, regardless of the size or shape of the substrate.