零和非零边界条件下矩阵型非线性Schrödinger方程的N个双极解

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Guofei Zhang, Jingsong He, Yi Cheng
{"title":"零和非零边界条件下矩阵型非线性Schrödinger方程的N个双极解","authors":"Guofei Zhang,&nbsp;Jingsong He,&nbsp;Yi Cheng","doi":"10.1111/sapm.70067","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, Riemann–Hilbert (RH) method is developed for the initial value problem of matrix-type nonlinear Schrödinger equation with discrete spectrum as double poles under zero and nonzero boundary conditions, respectively, which all include the process of direct scattering(the analyticity, symmetries and asymptotics of the Jost function, scattering, and reflection coefficients) and inverse scattering (residue conditions, norming constants, RH problem, and the reconstruction formula). Since the object of study is a matrix-type system, we will point out the similarities and differences between it and the RH method in the study of scalar and vector equations, such as we have to assume that <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <msub>\n <mi>k</mi>\n <mi>n</mi>\n </msub>\n <mo>∈</mo>\n <msup>\n <mi>C</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$k=k_{n}\\in \\mathbb {C}^{+}$</annotation>\n </semantics></math> is a third order zero of <span></span><math>\n <semantics>\n <mrow>\n <mo>det</mo>\n <mi>a</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\det a(k)$</annotation>\n </semantics></math> under <span></span><math>\n <semantics>\n <mrow>\n <mi>rank</mi>\n <mrow>\n <mo>(</mo>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>,</mo>\n <msub>\n <mi>k</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>2</mn>\n <mfenced>\n <mo>⇔</mo>\n <mi>rank</mi>\n <mo>(</mo>\n <mi>a</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>k</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n <mo>=</mo>\n <mn>0</mn>\n </mfenced>\n </mrow>\n <annotation>$\\mathrm{rank} (P(x,t,k_{n}))=2 \\left(\\Leftrightarrow \\mathrm{rank}(a(k_{n}))=0 \\right)$</annotation>\n </semantics></math>, and so on.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N Double-Pole Solutions of the Matrix-Type Nonlinear Schrödinger Equation Under Zero and Nonzero Boundary Conditions\",\"authors\":\"Guofei Zhang,&nbsp;Jingsong He,&nbsp;Yi Cheng\",\"doi\":\"10.1111/sapm.70067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, Riemann–Hilbert (RH) method is developed for the initial value problem of matrix-type nonlinear Schrödinger equation with discrete spectrum as double poles under zero and nonzero boundary conditions, respectively, which all include the process of direct scattering(the analyticity, symmetries and asymptotics of the Jost function, scattering, and reflection coefficients) and inverse scattering (residue conditions, norming constants, RH problem, and the reconstruction formula). Since the object of study is a matrix-type system, we will point out the similarities and differences between it and the RH method in the study of scalar and vector equations, such as we have to assume that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>k</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>∈</mo>\\n <msup>\\n <mi>C</mi>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$k=k_{n}\\\\in \\\\mathbb {C}^{+}$</annotation>\\n </semantics></math> is a third order zero of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>det</mo>\\n <mi>a</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\det a(k)$</annotation>\\n </semantics></math> under <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>rank</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>P</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>k</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mn>2</mn>\\n <mfenced>\\n <mo>⇔</mo>\\n <mi>rank</mi>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>k</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$\\\\mathrm{rank} (P(x,t,k_{n}))=2 \\\\left(\\\\Leftrightarrow \\\\mathrm{rank}(a(k_{n}))=0 \\\\right)$</annotation>\\n </semantics></math>, and so on.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70067\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70067","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文针对离散谱为双极点的矩阵型非线性Schrödinger方程,分别在零边界条件和非零边界条件下的初值问题,建立了Riemann-Hilbert (RH)方法,这两种边界条件都包括直接散射过程(Jost函数、散射系数、反射系数的解析性、对称性和渐近性)和逆散射过程(剩余条件、赋范常数、RH问题和重构公式)。由于研究对象是矩阵型系统,我们将指出它与RH方法在研究标量方程和矢量方程方面的异同。比如我们必须假设k = k n∈C + $k=k_{n}\in \mathbb {C}^{+}$是det a (k)的三阶零$\det a(k)$ under rank (P (x, t,n) = 2⇔rank (a (n))) = 0 $\mathrm{rank} (P(x,t,k_{n}))=2 \left(\Leftrightarrow \mathrm{rank}(a(k_{n}))=0 \right)$,以此类推。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N Double-Pole Solutions of the Matrix-Type Nonlinear Schrödinger Equation Under Zero and Nonzero Boundary Conditions

In this paper, Riemann–Hilbert (RH) method is developed for the initial value problem of matrix-type nonlinear Schrödinger equation with discrete spectrum as double poles under zero and nonzero boundary conditions, respectively, which all include the process of direct scattering(the analyticity, symmetries and asymptotics of the Jost function, scattering, and reflection coefficients) and inverse scattering (residue conditions, norming constants, RH problem, and the reconstruction formula). Since the object of study is a matrix-type system, we will point out the similarities and differences between it and the RH method in the study of scalar and vector equations, such as we have to assume that k = k n C + $k=k_{n}\in \mathbb {C}^{+}$ is a third order zero of det a ( k ) $\det a(k)$ under rank ( P ( x , t , k n ) ) = 2 rank ( a ( k n ) ) = 0 $\mathrm{rank} (P(x,t,k_{n}))=2 \left(\Leftrightarrow \mathrm{rank}(a(k_{n}))=0 \right)$ , and so on.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信