Xinya Jia, Keke Du, Yuanting Zhu, Liuyang Xie, Tangjuan Zhang, Liu Yang, Yuepeng Hu, Chao Lan, Qiang Zhang
{"title":"通过调节血脂异常和25-羟基维生素D代谢来探索预防心脏骤停的治疗靶点:一项孟德尔随机研究","authors":"Xinya Jia, Keke Du, Yuanting Zhu, Liuyang Xie, Tangjuan Zhang, Liu Yang, Yuepeng Hu, Chao Lan, Qiang Zhang","doi":"10.1155/humu/5536318","DOIUrl":null,"url":null,"abstract":"<p>Cardiac arrest (CA) prevention continues to be a substantial hurdle for global public health. Although dyslipidemia and 25-hydroxyvitamin D (25(OH)D) insufficiency are recognized contributing factors for cardiovascular disease (CVD), their causal relationship with CA risk is still uncertain. Here, we explored these correlations and pinpointed possible therapeutic targets for CA prevention though Mendelian randomization (MR). Both two-sample and multivariable MR analysis methods were conducted to assess how serum lipid traits and 25(OH)D influence the susceptibility to develop CA. Nine thousand nine hundred eighty-eight participants in total from the National Health and Nutrition Examination Survey (NHANES) engaged in validating the relationship between the concentrations of 25(OH)D and cardiovascular mortality in individuals with dyslipidemia. The integration of MR with expression quantitative trait locus (eQTL) analysis enabled the identification of druggable targets, and molecular docking was used to screen small molecules, which were subsequently validated in animal models. The MR results revealed that both elevated levels of low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (ApoB), as well as triglycerides (TGs), significantly contributed to an increased CA risk (<i>p</i> < 0.05). Conversely, higher amounts of apolipoprotein A1 (ApoA1), high-density lipoprotein cholesterol (HDL-C), and 25(OH)D were causally contributing to a decreased risk of CA (<i>p</i> < 0.05). A bidirectional causal relationship was observed among LDL-C, TG, ApoB, and 25(OH)D levels. Mediation MR suggests that dyslipidemia and low 25(OH)D status could potentially elevate the CA risk through pathways involving myocardial infarction, diabetes, and hypertension. NHANES data confirmed that higher 25(OH)D were tied to decreased risks of all-cause and CVD death among those with dyslipidemia (<i>p</i> < 0.01). Notably, chromobox 6 (CBX6), negatively associated with CA risk (OR = 0.87, 95% CI: 0.78–0.99, <i>p</i> = 0.029), was determined to be a target of both sanguinarine and lycorine, which improved lipid profiles and 25(OH)D in mice. In conclusion, dyslipidemia and low 25(OH)D status are causally related to CA risk, they appear to interact, and their coexistence may confer a higher risk of CVD mortality. Compounds targeting specific genes can both improve dyslipidemia and elevate 25(OH)D levels, thereby exhibiting potential therapeutic effects for preventing CA. Overall, this study enhances our understanding of the underlying mechanisms linking dyslipidemia, 25(OH)D deficiency, and CA and offers new perspectives for prevention.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/5536318","citationCount":"0","resultStr":"{\"title\":\"Exploring Therapeutic Targets for Preventing Cardiac Arrest by Modulating Dyslipidemia and 25-Hydroxyvitamin D Metabolism: A Mendelian Randomization Study\",\"authors\":\"Xinya Jia, Keke Du, Yuanting Zhu, Liuyang Xie, Tangjuan Zhang, Liu Yang, Yuepeng Hu, Chao Lan, Qiang Zhang\",\"doi\":\"10.1155/humu/5536318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cardiac arrest (CA) prevention continues to be a substantial hurdle for global public health. Although dyslipidemia and 25-hydroxyvitamin D (25(OH)D) insufficiency are recognized contributing factors for cardiovascular disease (CVD), their causal relationship with CA risk is still uncertain. Here, we explored these correlations and pinpointed possible therapeutic targets for CA prevention though Mendelian randomization (MR). Both two-sample and multivariable MR analysis methods were conducted to assess how serum lipid traits and 25(OH)D influence the susceptibility to develop CA. Nine thousand nine hundred eighty-eight participants in total from the National Health and Nutrition Examination Survey (NHANES) engaged in validating the relationship between the concentrations of 25(OH)D and cardiovascular mortality in individuals with dyslipidemia. The integration of MR with expression quantitative trait locus (eQTL) analysis enabled the identification of druggable targets, and molecular docking was used to screen small molecules, which were subsequently validated in animal models. The MR results revealed that both elevated levels of low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (ApoB), as well as triglycerides (TGs), significantly contributed to an increased CA risk (<i>p</i> < 0.05). Conversely, higher amounts of apolipoprotein A1 (ApoA1), high-density lipoprotein cholesterol (HDL-C), and 25(OH)D were causally contributing to a decreased risk of CA (<i>p</i> < 0.05). A bidirectional causal relationship was observed among LDL-C, TG, ApoB, and 25(OH)D levels. Mediation MR suggests that dyslipidemia and low 25(OH)D status could potentially elevate the CA risk through pathways involving myocardial infarction, diabetes, and hypertension. NHANES data confirmed that higher 25(OH)D were tied to decreased risks of all-cause and CVD death among those with dyslipidemia (<i>p</i> < 0.01). Notably, chromobox 6 (CBX6), negatively associated with CA risk (OR = 0.87, 95% CI: 0.78–0.99, <i>p</i> = 0.029), was determined to be a target of both sanguinarine and lycorine, which improved lipid profiles and 25(OH)D in mice. In conclusion, dyslipidemia and low 25(OH)D status are causally related to CA risk, they appear to interact, and their coexistence may confer a higher risk of CVD mortality. Compounds targeting specific genes can both improve dyslipidemia and elevate 25(OH)D levels, thereby exhibiting potential therapeutic effects for preventing CA. Overall, this study enhances our understanding of the underlying mechanisms linking dyslipidemia, 25(OH)D deficiency, and CA and offers new perspectives for prevention.</p>\",\"PeriodicalId\":13061,\"journal\":{\"name\":\"Human Mutation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/5536318\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Mutation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/humu/5536318\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/humu/5536318","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Exploring Therapeutic Targets for Preventing Cardiac Arrest by Modulating Dyslipidemia and 25-Hydroxyvitamin D Metabolism: A Mendelian Randomization Study
Cardiac arrest (CA) prevention continues to be a substantial hurdle for global public health. Although dyslipidemia and 25-hydroxyvitamin D (25(OH)D) insufficiency are recognized contributing factors for cardiovascular disease (CVD), their causal relationship with CA risk is still uncertain. Here, we explored these correlations and pinpointed possible therapeutic targets for CA prevention though Mendelian randomization (MR). Both two-sample and multivariable MR analysis methods were conducted to assess how serum lipid traits and 25(OH)D influence the susceptibility to develop CA. Nine thousand nine hundred eighty-eight participants in total from the National Health and Nutrition Examination Survey (NHANES) engaged in validating the relationship between the concentrations of 25(OH)D and cardiovascular mortality in individuals with dyslipidemia. The integration of MR with expression quantitative trait locus (eQTL) analysis enabled the identification of druggable targets, and molecular docking was used to screen small molecules, which were subsequently validated in animal models. The MR results revealed that both elevated levels of low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (ApoB), as well as triglycerides (TGs), significantly contributed to an increased CA risk (p < 0.05). Conversely, higher amounts of apolipoprotein A1 (ApoA1), high-density lipoprotein cholesterol (HDL-C), and 25(OH)D were causally contributing to a decreased risk of CA (p < 0.05). A bidirectional causal relationship was observed among LDL-C, TG, ApoB, and 25(OH)D levels. Mediation MR suggests that dyslipidemia and low 25(OH)D status could potentially elevate the CA risk through pathways involving myocardial infarction, diabetes, and hypertension. NHANES data confirmed that higher 25(OH)D were tied to decreased risks of all-cause and CVD death among those with dyslipidemia (p < 0.01). Notably, chromobox 6 (CBX6), negatively associated with CA risk (OR = 0.87, 95% CI: 0.78–0.99, p = 0.029), was determined to be a target of both sanguinarine and lycorine, which improved lipid profiles and 25(OH)D in mice. In conclusion, dyslipidemia and low 25(OH)D status are causally related to CA risk, they appear to interact, and their coexistence may confer a higher risk of CVD mortality. Compounds targeting specific genes can both improve dyslipidemia and elevate 25(OH)D levels, thereby exhibiting potential therapeutic effects for preventing CA. Overall, this study enhances our understanding of the underlying mechanisms linking dyslipidemia, 25(OH)D deficiency, and CA and offers new perspectives for prevention.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.