镁合金体内抗菌性能综述:种植体相关骨科感染的挑战、解决方案和前景

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Igor A. Khlusov, Konstantin A. Prosolov, Yurii P. Sharkeev, Anna V. Gorokhova, Alex A. Volinsky
{"title":"镁合金体内抗菌性能综述:种植体相关骨科感染的挑战、解决方案和前景","authors":"Igor A. Khlusov,&nbsp;Konstantin A. Prosolov,&nbsp;Yurii P. Sharkeev,&nbsp;Anna V. Gorokhova,&nbsp;Alex A. Volinsky","doi":"10.1002/jbm.b.35602","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Magnesium (Mg) and its alloys are promising materials for medical applications due to their biodegradability and biocompatibility. While Mg has inherent antibacterial properties, further enhancements are essential to meet clinical needs. A major challenge is achieving effective antimicrobial performance alongside controlled corrosion rates. This review examines in vivo studies and preclinical trials of antimicrobial Mg alloys and coatings, exploring their antibacterial mechanisms, the impact of additives, and the role of coatings in enhancing performance. It highlights the dual role of antimicrobial additives, which improve antibacterial action but may accelerate corrosion, complicating clinical use. Advances in coating technologies are discussed, focusing on strategies to incorporate antimicrobial elements while reducing corrosion and improving biocompatibility. Insights from recent in vivo studies and preclinical trials shed light on real-world effectiveness, safety, and regulatory challenges. The review emphasizes the progress made in developing antimicrobial Mg alloys and identifies critical challenges for their clinical applications. Continued research is needed to optimize these materials for safe and effective use, contributing to improved patient outcomes and advancing biomaterials science.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Magnesium Alloys In Vivo Antibacterial Properties: Challenges, Solutions, and Perspectives in Implant-Associated Orthopedic Infections\",\"authors\":\"Igor A. Khlusov,&nbsp;Konstantin A. Prosolov,&nbsp;Yurii P. Sharkeev,&nbsp;Anna V. Gorokhova,&nbsp;Alex A. Volinsky\",\"doi\":\"10.1002/jbm.b.35602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Magnesium (Mg) and its alloys are promising materials for medical applications due to their biodegradability and biocompatibility. While Mg has inherent antibacterial properties, further enhancements are essential to meet clinical needs. A major challenge is achieving effective antimicrobial performance alongside controlled corrosion rates. This review examines in vivo studies and preclinical trials of antimicrobial Mg alloys and coatings, exploring their antibacterial mechanisms, the impact of additives, and the role of coatings in enhancing performance. It highlights the dual role of antimicrobial additives, which improve antibacterial action but may accelerate corrosion, complicating clinical use. Advances in coating technologies are discussed, focusing on strategies to incorporate antimicrobial elements while reducing corrosion and improving biocompatibility. Insights from recent in vivo studies and preclinical trials shed light on real-world effectiveness, safety, and regulatory challenges. The review emphasizes the progress made in developing antimicrobial Mg alloys and identifies critical challenges for their clinical applications. Continued research is needed to optimize these materials for safe and effective use, contributing to improved patient outcomes and advancing biomaterials science.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 7\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35602\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

镁及其合金具有生物可降解性和生物相容性,是一种很有前景的医用材料。虽然镁具有固有的抗菌特性,但进一步增强是必要的,以满足临床需要。一个主要的挑战是在控制腐蚀速率的同时实现有效的抗菌性能。本文综述了抗菌镁合金和涂层的体内研究和临床前试验,探讨了它们的抗菌机制、添加剂的影响以及涂层在提高性能方面的作用。它强调了抗菌添加剂的双重作用,它可以提高抗菌作用,但可能加速腐蚀,使临床使用复杂化。讨论了涂层技术的进展,重点讨论了在减少腐蚀和提高生物相容性的同时加入抗菌元素的策略。来自最近的体内研究和临床前试验的见解揭示了现实世界的有效性、安全性和监管挑战。本文着重介绍了抗菌镁合金的研究进展,指出了抗菌镁合金临床应用面临的主要挑战。需要继续研究以优化这些材料的安全有效使用,为改善患者的治疗效果和推进生物材料科学做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Magnesium Alloys In Vivo Antibacterial Properties: Challenges, Solutions, and Perspectives in Implant-Associated Orthopedic Infections

Magnesium (Mg) and its alloys are promising materials for medical applications due to their biodegradability and biocompatibility. While Mg has inherent antibacterial properties, further enhancements are essential to meet clinical needs. A major challenge is achieving effective antimicrobial performance alongside controlled corrosion rates. This review examines in vivo studies and preclinical trials of antimicrobial Mg alloys and coatings, exploring their antibacterial mechanisms, the impact of additives, and the role of coatings in enhancing performance. It highlights the dual role of antimicrobial additives, which improve antibacterial action but may accelerate corrosion, complicating clinical use. Advances in coating technologies are discussed, focusing on strategies to incorporate antimicrobial elements while reducing corrosion and improving biocompatibility. Insights from recent in vivo studies and preclinical trials shed light on real-world effectiveness, safety, and regulatory challenges. The review emphasizes the progress made in developing antimicrobial Mg alloys and identifies critical challenges for their clinical applications. Continued research is needed to optimize these materials for safe and effective use, contributing to improved patient outcomes and advancing biomaterials science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信