Shawn M. Milrad, Kelsey E. Ennis, Desiree A. Knight, Kathie D. Dello, Lily Raye, Kyle R. Wodzicki
{"title":"残酷的夏天(和秋天):美国东南部的湿热趋势,极端和机制","authors":"Shawn M. Milrad, Kelsey E. Ennis, Desiree A. Knight, Kathie D. Dello, Lily Raye, Kyle R. Wodzicki","doi":"10.1002/joc.8837","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Humid heat has increased in frequency, intensity and duration in many locations across the globe, particularly those with warm and moist climates like much of the Southeast United States. This study employs an established wet bulb globe temperature (WBGT) estimation formula and high-resolution reanalysis data to develop a custom gridded WBGT dataset for the Southeast. Subsequently, summer and autumn WBGT (humid heat) trends and extremes are elucidated for 1950–2023. Results complement and correspond well to recent station-based work as well as gridded trends in the Universal Thermal Comfort Index (UTCI). Overall, trends in average and extreme (90th percentile) WBGT are larger and more widely statistically significant at night and during summer. Autumn WBGT increases are largest and most significant in the Florida Peninsula and near the Gulf Coast, where the heat content of the adjacent water peaks in September. Furthermore, there are large increases in the frequency and duration of summer night-time extremes; regions near the Gulf and in Florida are experiencing nearly three additional extreme summer nights per decade, and extreme events are approximately one night longer per decade. A quantification of WBGT components shows that moisture (dewpoint) increases exceed temperature increases and are the largest contributors to WBGT across most of the Southeast, except in parts of the Appalachian and Piedmont regions where temperature changes dominate. Wind speed and solar radiation changes are quite small across the Southeast and are at best minor contributors to WBGT trends. Results support previous literature that moisture changes are most responsible for humid heat trends in warm and moist climates.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 8","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cruel Summer (and Autumn): Humid Heat Trends, Extremes, and Mechanisms in the Southeast United States\",\"authors\":\"Shawn M. Milrad, Kelsey E. Ennis, Desiree A. Knight, Kathie D. Dello, Lily Raye, Kyle R. Wodzicki\",\"doi\":\"10.1002/joc.8837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Humid heat has increased in frequency, intensity and duration in many locations across the globe, particularly those with warm and moist climates like much of the Southeast United States. This study employs an established wet bulb globe temperature (WBGT) estimation formula and high-resolution reanalysis data to develop a custom gridded WBGT dataset for the Southeast. Subsequently, summer and autumn WBGT (humid heat) trends and extremes are elucidated for 1950–2023. Results complement and correspond well to recent station-based work as well as gridded trends in the Universal Thermal Comfort Index (UTCI). Overall, trends in average and extreme (90th percentile) WBGT are larger and more widely statistically significant at night and during summer. Autumn WBGT increases are largest and most significant in the Florida Peninsula and near the Gulf Coast, where the heat content of the adjacent water peaks in September. Furthermore, there are large increases in the frequency and duration of summer night-time extremes; regions near the Gulf and in Florida are experiencing nearly three additional extreme summer nights per decade, and extreme events are approximately one night longer per decade. A quantification of WBGT components shows that moisture (dewpoint) increases exceed temperature increases and are the largest contributors to WBGT across most of the Southeast, except in parts of the Appalachian and Piedmont regions where temperature changes dominate. Wind speed and solar radiation changes are quite small across the Southeast and are at best minor contributors to WBGT trends. Results support previous literature that moisture changes are most responsible for humid heat trends in warm and moist climates.</p>\\n </div>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8837\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8837","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Cruel Summer (and Autumn): Humid Heat Trends, Extremes, and Mechanisms in the Southeast United States
Humid heat has increased in frequency, intensity and duration in many locations across the globe, particularly those with warm and moist climates like much of the Southeast United States. This study employs an established wet bulb globe temperature (WBGT) estimation formula and high-resolution reanalysis data to develop a custom gridded WBGT dataset for the Southeast. Subsequently, summer and autumn WBGT (humid heat) trends and extremes are elucidated for 1950–2023. Results complement and correspond well to recent station-based work as well as gridded trends in the Universal Thermal Comfort Index (UTCI). Overall, trends in average and extreme (90th percentile) WBGT are larger and more widely statistically significant at night and during summer. Autumn WBGT increases are largest and most significant in the Florida Peninsula and near the Gulf Coast, where the heat content of the adjacent water peaks in September. Furthermore, there are large increases in the frequency and duration of summer night-time extremes; regions near the Gulf and in Florida are experiencing nearly three additional extreme summer nights per decade, and extreme events are approximately one night longer per decade. A quantification of WBGT components shows that moisture (dewpoint) increases exceed temperature increases and are the largest contributors to WBGT across most of the Southeast, except in parts of the Appalachian and Piedmont regions where temperature changes dominate. Wind speed and solar radiation changes are quite small across the Southeast and are at best minor contributors to WBGT trends. Results support previous literature that moisture changes are most responsible for humid heat trends in warm and moist climates.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions