等应力端位错相互作用控制橄榄石的瞬态和稳态位错蠕变

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
David Wallis, Thomas Breithaupt, Taco Broerse
{"title":"等应力端位错相互作用控制橄榄石的瞬态和稳态位错蠕变","authors":"David Wallis,&nbsp;Thomas Breithaupt,&nbsp;Taco Broerse","doi":"10.1029/2024JB030606","DOIUrl":null,"url":null,"abstract":"<p>The rheological behavior of olivine deforming by dislocation creep controls geodynamic processes that involve steady-state flow or transient viscosity evolution. Longstanding rheological models applied to both contexts assume that dislocation creep of olivine aggregates occurs close to the isostrain endmember with each grain deforming to the same strain but supporting different stress. Here, we test this assumption by constructing isostrain and isostress models based on flow laws for single crystals and comparing them to rheological data from aggregates. This analysis reveals that strain rates measured on olivine aggregates agree with those predicted by the isostress model but are an order of magnitude faster than those predicted by the isostrain model. When extrapolated to conditions typical of the shallow upper mantle, the isostress model predicts steady-state viscosities that are one to three orders of magnitude less than those predicted by the isostrain model. Furthermore, deformation close to the isostress endmember implies that transient creep occurs predominantly by dislocation interactions, suggesting viscosity changes that are approximately one order of magnitude greater than those predicted previously based on grain interactions associated with the isostrain model.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030606","citationCount":"0","resultStr":"{\"title\":\"Transient and Steady-State Dislocation Creep of Olivine Controlled by Dislocation Interactions at the Isostress Endmember\",\"authors\":\"David Wallis,&nbsp;Thomas Breithaupt,&nbsp;Taco Broerse\",\"doi\":\"10.1029/2024JB030606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rheological behavior of olivine deforming by dislocation creep controls geodynamic processes that involve steady-state flow or transient viscosity evolution. Longstanding rheological models applied to both contexts assume that dislocation creep of olivine aggregates occurs close to the isostrain endmember with each grain deforming to the same strain but supporting different stress. Here, we test this assumption by constructing isostrain and isostress models based on flow laws for single crystals and comparing them to rheological data from aggregates. This analysis reveals that strain rates measured on olivine aggregates agree with those predicted by the isostress model but are an order of magnitude faster than those predicted by the isostrain model. When extrapolated to conditions typical of the shallow upper mantle, the isostress model predicts steady-state viscosities that are one to three orders of magnitude less than those predicted by the isostrain model. Furthermore, deformation close to the isostress endmember implies that transient creep occurs predominantly by dislocation interactions, suggesting viscosity changes that are approximately one order of magnitude greater than those predicted previously based on grain interactions associated with the isostrain model.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"130 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030606\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030606\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030606","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

橄榄石位错蠕变变形的流变行为控制着涉及稳态流动或瞬态粘度演化的地球动力学过程。应用于这两种情况的长期流变模型假设橄榄石聚集体的位错蠕变发生在等应变端部附近,每个晶粒变形到相同的应变,但承受不同的应力。在这里,我们通过构建基于单晶流动规律的等应变和等应力模型,并将其与来自聚集体的流变数据进行比较,来验证这一假设。分析表明,在橄榄石聚集体上测量的应变速率与等应力模型预测的应变速率一致,但比等应变模型预测的应变速率快一个数量级。当外推到上地幔浅层的典型条件时,等应力模型预测的稳态粘度比等应变模型预测的要小一到三个数量级。此外,靠近等应力端部的变形表明,瞬态蠕变主要是由位错相互作用引起的,这表明粘度变化比先前基于等应变模型的晶粒相互作用预测的要大一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient and Steady-State Dislocation Creep of Olivine Controlled by Dislocation Interactions at the Isostress Endmember

The rheological behavior of olivine deforming by dislocation creep controls geodynamic processes that involve steady-state flow or transient viscosity evolution. Longstanding rheological models applied to both contexts assume that dislocation creep of olivine aggregates occurs close to the isostrain endmember with each grain deforming to the same strain but supporting different stress. Here, we test this assumption by constructing isostrain and isostress models based on flow laws for single crystals and comparing them to rheological data from aggregates. This analysis reveals that strain rates measured on olivine aggregates agree with those predicted by the isostress model but are an order of magnitude faster than those predicted by the isostrain model. When extrapolated to conditions typical of the shallow upper mantle, the isostress model predicts steady-state viscosities that are one to three orders of magnitude less than those predicted by the isostrain model. Furthermore, deformation close to the isostress endmember implies that transient creep occurs predominantly by dislocation interactions, suggesting viscosity changes that are approximately one order of magnitude greater than those predicted previously based on grain interactions associated with the isostrain model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信