基于声波束形成和空间滤波的燃气管道泄漏实时远程定位——一种轻量级方法

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mayukh Biswas;Amit Swain;Raj Rakshit;Chirabrata Bhaumik
{"title":"基于声波束形成和空间滤波的燃气管道泄漏实时远程定位——一种轻量级方法","authors":"Mayukh Biswas;Amit Swain;Raj Rakshit;Chirabrata Bhaumik","doi":"10.1109/LSENS.2025.3574858","DOIUrl":null,"url":null,"abstract":"In-situ monitoring of a pipe leak becomes a daunting task, even with state-of-art sensing methods, if the pipe happens to be in an inaccessible indoor location. While acoustic wideband beamforming method exists for the same, the dynamic noise and sensors' susceptibility to malfunction in an industrial environment needs to be addressed. This work presents a joint spectral focusing and fault-tolerant paradigm with a novel sound source separation algorithm as a fallback leak diagnostics tool. Computation and communication costs are reduced by processing voluminous array sensor data at the edge, and transmitting the lightweight audio–visual information to the operator for remote localization and diagnostics. The localization accuracy for the proposed method has been found to be within 5% for different experimental conditions.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 7","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Remote Localization of Gas Pipe Leakage Using Acoustic Beamforming and Spatial Filtering—A Lightweight Approach\",\"authors\":\"Mayukh Biswas;Amit Swain;Raj Rakshit;Chirabrata Bhaumik\",\"doi\":\"10.1109/LSENS.2025.3574858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-situ monitoring of a pipe leak becomes a daunting task, even with state-of-art sensing methods, if the pipe happens to be in an inaccessible indoor location. While acoustic wideband beamforming method exists for the same, the dynamic noise and sensors' susceptibility to malfunction in an industrial environment needs to be addressed. This work presents a joint spectral focusing and fault-tolerant paradigm with a novel sound source separation algorithm as a fallback leak diagnostics tool. Computation and communication costs are reduced by processing voluminous array sensor data at the edge, and transmitting the lightweight audio–visual information to the operator for remote localization and diagnostics. The localization accuracy for the proposed method has been found to be within 5% for different experimental conditions.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 7\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11017627/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11017627/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

如果管道恰好位于无法进入的室内位置,即使使用最先进的传感方法,对管道泄漏进行现场监测也会成为一项艰巨的任务。虽然存在声宽带波束形成方法,但需要解决工业环境下的动态噪声和传感器的故障敏感性问题。这项工作提出了一种联合频谱聚焦和容错范例,并提出了一种新的声源分离算法作为后备泄漏诊断工具。通过在边缘处理大量阵列传感器数据,并将轻量级的视听信息传输给操作员进行远程定位和诊断,可以减少计算和通信成本。在不同的实验条件下,该方法的定位精度在5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Remote Localization of Gas Pipe Leakage Using Acoustic Beamforming and Spatial Filtering—A Lightweight Approach
In-situ monitoring of a pipe leak becomes a daunting task, even with state-of-art sensing methods, if the pipe happens to be in an inaccessible indoor location. While acoustic wideband beamforming method exists for the same, the dynamic noise and sensors' susceptibility to malfunction in an industrial environment needs to be addressed. This work presents a joint spectral focusing and fault-tolerant paradigm with a novel sound source separation algorithm as a fallback leak diagnostics tool. Computation and communication costs are reduced by processing voluminous array sensor data at the edge, and transmitting the lightweight audio–visual information to the operator for remote localization and diagnostics. The localization accuracy for the proposed method has been found to be within 5% for different experimental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信