蓖麻油酸和油酸在高岭石和石英表面的吸附机理研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Chuilei Kong , Lingyun Liu , Xianglin Yang , Fangqin Lu
{"title":"蓖麻油酸和油酸在高岭石和石英表面的吸附机理研究","authors":"Chuilei Kong ,&nbsp;Lingyun Liu ,&nbsp;Xianglin Yang ,&nbsp;Fangqin Lu","doi":"10.1016/j.mineng.2025.109544","DOIUrl":null,"url":null,"abstract":"<div><div>The introduction of a hydroxyl group in the ricinoleat (ROA<sup>−</sup>) molecule enhances its adsorption selectivity on kaolinite surfaces compared to conventional oleate (OA<sup>−</sup>). In this study, a combined approach of density functional theory (DFT) simulations and experimental validation was employed to investigate the adsorption behaviors of ROA<sup>−</sup> and OA<sup>−</sup> on kaolinite and quartz surfaces. Mulliken population, Hirshfeld charge transfer, and PDOS analyses revealed that ROA<sup>−</sup> adsorption on kaolinite is primarily driven by hydrogen bonding and electrostatic interactions, whereas adsorption on quartz is dominated by weaker hydrogen bonding. The adsorption strength follows the order: ROA<sup>−</sup>/kaolinite &gt; OA<sup>−</sup>/kaolinite &gt; ROA<sup>−</sup>/quartz &gt; OA<sup>−</sup>/quartz. Flotation experiments showed that ROA<sup>−</sup> achieved a kaolinite recovery of 86.71 % and a separation efficiency of 57.12 % at concentrations below 0.9 mmol/L, outperforming OA<sup>−</sup>. Zeta potential, FTIR, and XPS results further confirmed that the adsorption mechanisms are highly consistent with DFT predictions, offering theoretical guidance for the design of selective anionic collectors for kaolinite separation.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"232 ","pages":"Article 109544"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the adsorption mechanism of ricinoleate and oleate on kaolinite and quartz surfaces\",\"authors\":\"Chuilei Kong ,&nbsp;Lingyun Liu ,&nbsp;Xianglin Yang ,&nbsp;Fangqin Lu\",\"doi\":\"10.1016/j.mineng.2025.109544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The introduction of a hydroxyl group in the ricinoleat (ROA<sup>−</sup>) molecule enhances its adsorption selectivity on kaolinite surfaces compared to conventional oleate (OA<sup>−</sup>). In this study, a combined approach of density functional theory (DFT) simulations and experimental validation was employed to investigate the adsorption behaviors of ROA<sup>−</sup> and OA<sup>−</sup> on kaolinite and quartz surfaces. Mulliken population, Hirshfeld charge transfer, and PDOS analyses revealed that ROA<sup>−</sup> adsorption on kaolinite is primarily driven by hydrogen bonding and electrostatic interactions, whereas adsorption on quartz is dominated by weaker hydrogen bonding. The adsorption strength follows the order: ROA<sup>−</sup>/kaolinite &gt; OA<sup>−</sup>/kaolinite &gt; ROA<sup>−</sup>/quartz &gt; OA<sup>−</sup>/quartz. Flotation experiments showed that ROA<sup>−</sup> achieved a kaolinite recovery of 86.71 % and a separation efficiency of 57.12 % at concentrations below 0.9 mmol/L, outperforming OA<sup>−</sup>. Zeta potential, FTIR, and XPS results further confirmed that the adsorption mechanisms are highly consistent with DFT predictions, offering theoretical guidance for the design of selective anionic collectors for kaolinite separation.</div></div>\",\"PeriodicalId\":18594,\"journal\":{\"name\":\"Minerals Engineering\",\"volume\":\"232 \",\"pages\":\"Article 109544\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892687525003723\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687525003723","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统油酸(OA -)相比,在蓖麻油酸(ROA -)分子中引入羟基增强了其在高岭石表面的吸附选择性。本研究采用密度泛函理论(DFT)模拟和实验验证相结合的方法研究了ROA -和OA -在高岭石和石英表面的吸附行为。Mulliken种群、Hirshfeld电荷转移和PDOS分析表明,高岭石对ROA−的吸附主要由氢键和静电相互作用驱动,而石英对ROA−的吸附主要由较弱的氢键驱动。吸附强度为:ROA−/高岭石>;OA−/高岭石比;ROA−/石英比;OA−/石英。浮选实验表明,在浓度低于0.9 mmol/L时,ROA−的高岭石回收率为86.71%,分离效率为57.12%,优于OA−。Zeta电位、FTIR和XPS结果进一步证实了吸附机理与DFT预测高度一致,为高岭石选择性阴离子捕收剂的设计提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the adsorption mechanism of ricinoleate and oleate on kaolinite and quartz surfaces
The introduction of a hydroxyl group in the ricinoleat (ROA) molecule enhances its adsorption selectivity on kaolinite surfaces compared to conventional oleate (OA). In this study, a combined approach of density functional theory (DFT) simulations and experimental validation was employed to investigate the adsorption behaviors of ROA and OA on kaolinite and quartz surfaces. Mulliken population, Hirshfeld charge transfer, and PDOS analyses revealed that ROA adsorption on kaolinite is primarily driven by hydrogen bonding and electrostatic interactions, whereas adsorption on quartz is dominated by weaker hydrogen bonding. The adsorption strength follows the order: ROA/kaolinite > OA/kaolinite > ROA/quartz > OA/quartz. Flotation experiments showed that ROA achieved a kaolinite recovery of 86.71 % and a separation efficiency of 57.12 % at concentrations below 0.9 mmol/L, outperforming OA. Zeta potential, FTIR, and XPS results further confirmed that the adsorption mechanisms are highly consistent with DFT predictions, offering theoretical guidance for the design of selective anionic collectors for kaolinite separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信