随机 ntz多项式的零

IF 1.2 3区 数学 Q1 MATHEMATICS
Doron S. Lubinsky , Igor E. Pritsker
{"title":"随机<s:1> ntz多项式的零","authors":"Doron S. Lubinsky ,&nbsp;Igor E. Pritsker","doi":"10.1016/j.jmaa.2025.129799","DOIUrl":null,"url":null,"abstract":"<div><div>We study the expected number of positive zeros of Müntz polynomials with real i.i.d. coefficients. For the standard Gaussian coefficients, we establish asymptotic results for the expected number of positive zeros when the exponents of Müntz monomials that span our random Müntz polynomials have polynomial and logarithmic growth. We also present many bounds on the expected number of zeros of random Müntz polynomials with various real i.i.d. coefficients, including the case of arbitrary nontrivial real i.i.d. coefficients. Since Müntz polynomials include lacunary polynomials, sparse polynomials or fewnomials as special cases, our results directly apply to the expected number of real zeros for those classes of polynomials with gaps.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129799"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeros of random Müntz polynomials\",\"authors\":\"Doron S. Lubinsky ,&nbsp;Igor E. Pritsker\",\"doi\":\"10.1016/j.jmaa.2025.129799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the expected number of positive zeros of Müntz polynomials with real i.i.d. coefficients. For the standard Gaussian coefficients, we establish asymptotic results for the expected number of positive zeros when the exponents of Müntz monomials that span our random Müntz polynomials have polynomial and logarithmic growth. We also present many bounds on the expected number of zeros of random Müntz polynomials with various real i.i.d. coefficients, including the case of arbitrary nontrivial real i.i.d. coefficients. Since Müntz polynomials include lacunary polynomials, sparse polynomials or fewnomials as special cases, our results directly apply to the expected number of real zeros for those classes of polynomials with gaps.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129799\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005803\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005803","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有实数iid系数的m ntz多项式的正零期望值。对于标准高斯系数,当跨越随机m ntz多项式的m ntz单项式的指数具有多项式和对数增长时,我们建立了期望的正零数的渐近结果。我们还给出了具有各种实数i - id系数的随机m ntz多项式的期望零点数的许多边界,包括任意非平凡实数i - id系数的情况。由于m ntz多项式包括空白多项式,稀疏多项式或作为特殊情况的少多项式,我们的结果直接适用于那些具有间隙的多项式类的实零的期望数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeros of random Müntz polynomials
We study the expected number of positive zeros of Müntz polynomials with real i.i.d. coefficients. For the standard Gaussian coefficients, we establish asymptotic results for the expected number of positive zeros when the exponents of Müntz monomials that span our random Müntz polynomials have polynomial and logarithmic growth. We also present many bounds on the expected number of zeros of random Müntz polynomials with various real i.i.d. coefficients, including the case of arbitrary nontrivial real i.i.d. coefficients. Since Müntz polynomials include lacunary polynomials, sparse polynomials or fewnomials as special cases, our results directly apply to the expected number of real zeros for those classes of polynomials with gaps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信