{"title":"基于节点扩散码RAST-K的多物理场耦合码系统对稳态耗尽解的不确定性量化","authors":"Jinsu Park , Yeongseok Kang , Deokjung Lee","doi":"10.1016/j.net.2025.103751","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the uncertainty quantification results of steady-state depletion simulations using a multi-physics coupling framework based on the nodal diffusion code RAST-K. Developed for the analysis and optimization of pressurized water reactors, RAST-K integrates advanced methodologies and diverse engineering capabilities, consistently demonstrating strong agreement with measured data and commercial nuclear design codes. High-fidelity core simulations are conducted through the multi-physics coupling of RAST-K with the subchannel thermal-hydraulic code CTF and the fuel performance code FRAPCON. Notably, the consideration of dynamic gap conductance and thermal conductivity degradation in fuel performance calculations highlights discrepancies in pin-wise fuel temperature predictions. Uncertainty quantification is performed using stochastic sampling methods by perturbing both input parameters and nuclear data. The results indicate that uncertainties in global reactor design parameters, such as critical boron concentration, axial shape index, and peaking factor, are primarily driven by nuclear data perturbations, while thermal-hydraulic uncertainties are influenced by both input and nuclear data variations.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 11","pages":"Article 103751"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification of steady state depeltion solution using multi-physics coupling code system based on nodal diffusion code RAST-K\",\"authors\":\"Jinsu Park , Yeongseok Kang , Deokjung Lee\",\"doi\":\"10.1016/j.net.2025.103751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the uncertainty quantification results of steady-state depletion simulations using a multi-physics coupling framework based on the nodal diffusion code RAST-K. Developed for the analysis and optimization of pressurized water reactors, RAST-K integrates advanced methodologies and diverse engineering capabilities, consistently demonstrating strong agreement with measured data and commercial nuclear design codes. High-fidelity core simulations are conducted through the multi-physics coupling of RAST-K with the subchannel thermal-hydraulic code CTF and the fuel performance code FRAPCON. Notably, the consideration of dynamic gap conductance and thermal conductivity degradation in fuel performance calculations highlights discrepancies in pin-wise fuel temperature predictions. Uncertainty quantification is performed using stochastic sampling methods by perturbing both input parameters and nuclear data. The results indicate that uncertainties in global reactor design parameters, such as critical boron concentration, axial shape index, and peaking factor, are primarily driven by nuclear data perturbations, while thermal-hydraulic uncertainties are influenced by both input and nuclear data variations.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"57 11\",\"pages\":\"Article 103751\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573325003195\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325003195","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Uncertainty quantification of steady state depeltion solution using multi-physics coupling code system based on nodal diffusion code RAST-K
This study presents the uncertainty quantification results of steady-state depletion simulations using a multi-physics coupling framework based on the nodal diffusion code RAST-K. Developed for the analysis and optimization of pressurized water reactors, RAST-K integrates advanced methodologies and diverse engineering capabilities, consistently demonstrating strong agreement with measured data and commercial nuclear design codes. High-fidelity core simulations are conducted through the multi-physics coupling of RAST-K with the subchannel thermal-hydraulic code CTF and the fuel performance code FRAPCON. Notably, the consideration of dynamic gap conductance and thermal conductivity degradation in fuel performance calculations highlights discrepancies in pin-wise fuel temperature predictions. Uncertainty quantification is performed using stochastic sampling methods by perturbing both input parameters and nuclear data. The results indicate that uncertainties in global reactor design parameters, such as critical boron concentration, axial shape index, and peaking factor, are primarily driven by nuclear data perturbations, while thermal-hydraulic uncertainties are influenced by both input and nuclear data variations.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development