{"title":"分形表示抛物线曲线上的数字零","authors":"Xuemin Wang , Yi Lu , Jingjing Chen , Kan Jiang","doi":"10.1016/j.jmaa.2025.129801","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by several results in the study of unique <em>q</em>-expansions, this paper investigates the following problem. Let <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> be a self-similar set with the convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. How many distinct pairs <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi></math></span> satisfy the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>?</mo></math></span></span></span> We establish the following result:</div><div>For any <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and any <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, there exists a homogeneous self-similar set <em>K</em> (with convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>) such that<span><span><span><math><mi>α</mi><mo>−</mo><mi>ϵ</mi><mo><</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub><mo></mo><mo>(</mo><mi>K</mi><mo>)</mo><mo><</mo><mi>α</mi><mo>,</mo></math></span></span></span> and the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi><mo>,</mo></math></span></span></span> has exactly countably many distinct solutions. Specifically,<span><span><span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>:</mo><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo><mo>∩</mo><mi>K</mi><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>:</mo><mi>k</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></mrow><mo>∪</mo><mo>{</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> denotes the Hausdorff dimension, and <span><math><mn>1</mn><mo>/</mo><mi>m</mi></math></span>, <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, represents the similarity ratio of <em>K</em>. Similar result can be proved for the Bedford-McMullen carpet.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129801"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal representations of the number zero on the parabola curve\",\"authors\":\"Xuemin Wang , Yi Lu , Jingjing Chen , Kan Jiang\",\"doi\":\"10.1016/j.jmaa.2025.129801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by several results in the study of unique <em>q</em>-expansions, this paper investigates the following problem. Let <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> be a self-similar set with the convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. How many distinct pairs <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi></math></span> satisfy the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>?</mo></math></span></span></span> We establish the following result:</div><div>For any <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and any <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, there exists a homogeneous self-similar set <em>K</em> (with convex hull <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>) such that<span><span><span><math><mi>α</mi><mo>−</mo><mi>ϵ</mi><mo><</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub><mo></mo><mo>(</mo><mi>K</mi><mo>)</mo><mo><</mo><mi>α</mi><mo>,</mo></math></span></span></span> and the equation<span><span><span><math><mn>0</mn><mo>=</mo><mi>y</mi><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><mi>K</mi><mo>,</mo></math></span></span></span> has exactly countably many distinct solutions. Specifically,<span><span><span><math><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>:</mo><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo><mo>∩</mo><mi>K</mi><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>:</mo><mi>k</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></mrow><mo>∪</mo><mo>{</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> denotes the Hausdorff dimension, and <span><math><mn>1</mn><mo>/</mo><mi>m</mi></math></span>, <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, represents the similarity ratio of <em>K</em>. Similar result can be proved for the Bedford-McMullen carpet.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129801\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005827\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005827","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fractal representations of the number zero on the parabola curve
Motivated by several results in the study of unique q-expansions, this paper investigates the following problem. Let be a self-similar set with the convex hull . How many distinct pairs satisfy the equation We establish the following result:
For any and any , there exists a homogeneous self-similar set K (with convex hull ) such that and the equation has exactly countably many distinct solutions. Specifically, where denotes the Hausdorff dimension, and , , represents the similarity ratio of K. Similar result can be proved for the Bedford-McMullen carpet.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.