深度学习加速动态加载功能梯度材料的设计

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Jin Huang , Jian Zhang , Lei Li , Ruizhi Zhang , Yahui Huang , Guoqiang Luo , Qiang Shen
{"title":"深度学习加速动态加载功能梯度材料的设计","authors":"Jin Huang ,&nbsp;Jian Zhang ,&nbsp;Lei Li ,&nbsp;Ruizhi Zhang ,&nbsp;Yahui Huang ,&nbsp;Guoqiang Luo ,&nbsp;Qiang Shen","doi":"10.1016/j.ijimpeng.2025.105443","DOIUrl":null,"url":null,"abstract":"<div><div>Spallation is a fracture phenomenon induced by dynamic loading and significantly influenced by peak stress (<span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>), strain rate (<span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span>), and pulse duration (<span><math><mi>τ</mi></math></span>) of loading stress history. Experimental studies of spallation often encounter coupling among these parameters due to limitations in loading techniques, leading to inconsistent findings. The study introduces a novel method to independently regulate these parameters using a graded density impactor (GDI). A deep learning-based inverse design model was developed to optimize the GDI structure. Results show that the unique architecture of the GDI generates segmented rarefaction waves, enabling precise control of their intensity and arrival time at the spall plane. This allows effective adjustment of <span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>, <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> and <span><math><mi>τ</mi></math></span> during spallation. The inverse design model was trained with a mixed loss function and achieved outstanding predictive accuracy with an R² value exceeding 0.99. Using the trained model, tailored GDI structures were designed to achieve specific expected <span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>, <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> and <span><math><mi>τ</mi></math></span>. The designed GDI can cause spallation with <span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>, <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> and <span><math><mi>τ</mi></math></span> closely matching expected values. This machine learning-based approach offers a powerful tool for the precise design of spall experiments, advancing the study of material behavior under dynamic loading.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"206 ","pages":"Article 105443"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning accelerating design of functionally graded materials for application in dynamic loading\",\"authors\":\"Jin Huang ,&nbsp;Jian Zhang ,&nbsp;Lei Li ,&nbsp;Ruizhi Zhang ,&nbsp;Yahui Huang ,&nbsp;Guoqiang Luo ,&nbsp;Qiang Shen\",\"doi\":\"10.1016/j.ijimpeng.2025.105443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spallation is a fracture phenomenon induced by dynamic loading and significantly influenced by peak stress (<span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>), strain rate (<span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span>), and pulse duration (<span><math><mi>τ</mi></math></span>) of loading stress history. Experimental studies of spallation often encounter coupling among these parameters due to limitations in loading techniques, leading to inconsistent findings. The study introduces a novel method to independently regulate these parameters using a graded density impactor (GDI). A deep learning-based inverse design model was developed to optimize the GDI structure. Results show that the unique architecture of the GDI generates segmented rarefaction waves, enabling precise control of their intensity and arrival time at the spall plane. This allows effective adjustment of <span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>, <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> and <span><math><mi>τ</mi></math></span> during spallation. The inverse design model was trained with a mixed loss function and achieved outstanding predictive accuracy with an R² value exceeding 0.99. Using the trained model, tailored GDI structures were designed to achieve specific expected <span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>, <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> and <span><math><mi>τ</mi></math></span>. The designed GDI can cause spallation with <span><math><msub><mi>σ</mi><mi>p</mi></msub></math></span>, <span><math><mover><mrow><mi>ε</mi></mrow><mi>˙</mi></mover></math></span> and <span><math><mi>τ</mi></math></span> closely matching expected values. This machine learning-based approach offers a powerful tool for the precise design of spall experiments, advancing the study of material behavior under dynamic loading.</div></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":\"206 \",\"pages\":\"Article 105443\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X25002222\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25002222","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

裂裂是一种由动加载引起的断裂现象,受峰值应力(σp)、应变率(ε˙)和加载应力历史脉冲持续时间(τ)的显著影响。由于加载技术的限制,裂裂的实验研究经常遇到这些参数之间的耦合,导致结果不一致。本文介绍了一种利用梯度密度冲击器(GDI)独立调节这些参数的新方法。建立了基于深度学习的GDI结构反设计模型。结果表明,GDI的独特结构产生了分段的稀疏波,可以精确控制其强度和到达碎片平面的时间。这使得散裂过程中σp、ε˙和τ的调整变得有效。采用混合损失函数对反设计模型进行训练,获得了较好的预测精度,R²值超过0.99。利用训练好的模型,设计了定制的GDI结构,以获得特定的期望σp、ε˙和τ。设计的GDI能引起散裂,σp、ε˙τ与期望值接近。这种基于机器学习的方法为碎片实验的精确设计提供了强大的工具,推进了动态加载下材料行为的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning accelerating design of functionally graded materials for application in dynamic loading
Spallation is a fracture phenomenon induced by dynamic loading and significantly influenced by peak stress (σp), strain rate (ε˙), and pulse duration (τ) of loading stress history. Experimental studies of spallation often encounter coupling among these parameters due to limitations in loading techniques, leading to inconsistent findings. The study introduces a novel method to independently regulate these parameters using a graded density impactor (GDI). A deep learning-based inverse design model was developed to optimize the GDI structure. Results show that the unique architecture of the GDI generates segmented rarefaction waves, enabling precise control of their intensity and arrival time at the spall plane. This allows effective adjustment of σp, ε˙ and τ during spallation. The inverse design model was trained with a mixed loss function and achieved outstanding predictive accuracy with an R² value exceeding 0.99. Using the trained model, tailored GDI structures were designed to achieve specific expected σp, ε˙ and τ. The designed GDI can cause spallation with σp, ε˙ and τ closely matching expected values. This machine learning-based approach offers a powerful tool for the precise design of spall experiments, advancing the study of material behavior under dynamic loading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信