{"title":"随机傅里叶特征的anova增强","authors":"Daniel Potts, Laura Weidensager","doi":"10.1016/j.acha.2025.101789","DOIUrl":null,"url":null,"abstract":"<div><div>We propose two algorithms for boosting random Fourier feature models for approximating high-dimensional functions. These methods utilize the classical and generalized analysis of variance (ANOVA) decomposition to learn low-order functions, where there are few interactions between the variables. Our algorithms are able to find an index set of important input variables and variable interactions reliably.</div><div>Furthermore, we generalize already existing random Fourier feature models to an ANOVA setting, where terms of different order can be used. Our algorithms have the advantage of being interpretable, meaning that the influence of every input variable is known in the learned model, even for dependent input variables. We provide theoretical as well as numerical results that our algorithms perform well for sensitivity analysis. The ANOVA-boosting step reduces the approximation error of existing methods significantly.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101789"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANOVA-boosting for random Fourier features\",\"authors\":\"Daniel Potts, Laura Weidensager\",\"doi\":\"10.1016/j.acha.2025.101789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose two algorithms for boosting random Fourier feature models for approximating high-dimensional functions. These methods utilize the classical and generalized analysis of variance (ANOVA) decomposition to learn low-order functions, where there are few interactions between the variables. Our algorithms are able to find an index set of important input variables and variable interactions reliably.</div><div>Furthermore, we generalize already existing random Fourier feature models to an ANOVA setting, where terms of different order can be used. Our algorithms have the advantage of being interpretable, meaning that the influence of every input variable is known in the learned model, even for dependent input variables. We provide theoretical as well as numerical results that our algorithms perform well for sensitivity analysis. The ANOVA-boosting step reduces the approximation error of existing methods significantly.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101789\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000430\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000430","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We propose two algorithms for boosting random Fourier feature models for approximating high-dimensional functions. These methods utilize the classical and generalized analysis of variance (ANOVA) decomposition to learn low-order functions, where there are few interactions between the variables. Our algorithms are able to find an index set of important input variables and variable interactions reliably.
Furthermore, we generalize already existing random Fourier feature models to an ANOVA setting, where terms of different order can be used. Our algorithms have the advantage of being interpretable, meaning that the influence of every input variable is known in the learned model, even for dependent input variables. We provide theoretical as well as numerical results that our algorithms perform well for sensitivity analysis. The ANOVA-boosting step reduces the approximation error of existing methods significantly.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.