t Hooft束上的完全标志三倍和模空间的实例

IF 2.1 1区 数学 Q1 MATHEMATICS
Vincenzo Antonelli , Francesco Malaspina , Simone Marchesi , Joan Pons-Llopis
{"title":"t Hooft束上的完全标志三倍和模空间的实例","authors":"Vincenzo Antonelli ,&nbsp;Francesco Malaspina ,&nbsp;Simone Marchesi ,&nbsp;Joan Pons-Llopis","doi":"10.1016/j.matpur.2025.103763","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we study the moduli spaces of instanton bundles on the flag twistor space <span><math><mi>F</mi><mo>:</mo><mo>=</mo><mi>F</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. We stratify them in terms of the minimal twist supporting global sections and we introduce the notion of (special) ‘t Hooft bundle on <em>F</em>. In particular we prove that there exist <em>μ</em>-stable ‘t Hooft bundles for each admissible charge <em>k</em>. We completely describe the geometric structure of the moduli space of (special) ‘t Hooft bundles for arbitrary charge <em>k</em>. Along the way to reach these goals, we describe the possible structures of multiple curves supported on some rational curves in <em>F</em> as well as the family of del Pezzo surfaces realized as hyperplane sections of <em>F</em>. Finally we investigate the splitting behavior of ‘t Hooft bundles when restricted to conics.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"202 ","pages":"Article 103763"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"‘t Hooft bundles on the complete flag threefold and moduli spaces of instantons\",\"authors\":\"Vincenzo Antonelli ,&nbsp;Francesco Malaspina ,&nbsp;Simone Marchesi ,&nbsp;Joan Pons-Llopis\",\"doi\":\"10.1016/j.matpur.2025.103763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we study the moduli spaces of instanton bundles on the flag twistor space <span><math><mi>F</mi><mo>:</mo><mo>=</mo><mi>F</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. We stratify them in terms of the minimal twist supporting global sections and we introduce the notion of (special) ‘t Hooft bundle on <em>F</em>. In particular we prove that there exist <em>μ</em>-stable ‘t Hooft bundles for each admissible charge <em>k</em>. We completely describe the geometric structure of the moduli space of (special) ‘t Hooft bundles for arbitrary charge <em>k</em>. Along the way to reach these goals, we describe the possible structures of multiple curves supported on some rational curves in <em>F</em> as well as the family of del Pezzo surfaces realized as hyperplane sections of <em>F</em>. Finally we investigate the splitting behavior of ‘t Hooft bundles when restricted to conics.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"202 \",\"pages\":\"Article 103763\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001072\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001072","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了旗扭空间F:=F(0,1,2)上的瞬子束的模空间。我们根据支持全局截面的最小扭转对它们进行了分层,并在f上引入了(特殊)t Hooft束的概念,特别证明了对于每一个可允许的电荷k都存在μ稳定的t Hooft束。我们完整地描述了任意电荷k的(特殊)t Hooft束的模空间的几何结构。我们描述了F中若干有理曲线支撑的多重曲线的可能结构,以及作为F的超平面截面实现的del Pezzo曲面族,最后研究了F的Hooft束在限制于二次曲线时的分裂行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
‘t Hooft bundles on the complete flag threefold and moduli spaces of instantons
In this work we study the moduli spaces of instanton bundles on the flag twistor space F:=F(0,1,2). We stratify them in terms of the minimal twist supporting global sections and we introduce the notion of (special) ‘t Hooft bundle on F. In particular we prove that there exist μ-stable ‘t Hooft bundles for each admissible charge k. We completely describe the geometric structure of the moduli space of (special) ‘t Hooft bundles for arbitrary charge k. Along the way to reach these goals, we describe the possible structures of multiple curves supported on some rational curves in F as well as the family of del Pezzo surfaces realized as hyperplane sections of F. Finally we investigate the splitting behavior of ‘t Hooft bundles when restricted to conics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信