Vincenzo Antonelli , Francesco Malaspina , Simone Marchesi , Joan Pons-Llopis
{"title":"t Hooft束上的完全标志三倍和模空间的实例","authors":"Vincenzo Antonelli , Francesco Malaspina , Simone Marchesi , Joan Pons-Llopis","doi":"10.1016/j.matpur.2025.103763","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we study the moduli spaces of instanton bundles on the flag twistor space <span><math><mi>F</mi><mo>:</mo><mo>=</mo><mi>F</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. We stratify them in terms of the minimal twist supporting global sections and we introduce the notion of (special) ‘t Hooft bundle on <em>F</em>. In particular we prove that there exist <em>μ</em>-stable ‘t Hooft bundles for each admissible charge <em>k</em>. We completely describe the geometric structure of the moduli space of (special) ‘t Hooft bundles for arbitrary charge <em>k</em>. Along the way to reach these goals, we describe the possible structures of multiple curves supported on some rational curves in <em>F</em> as well as the family of del Pezzo surfaces realized as hyperplane sections of <em>F</em>. Finally we investigate the splitting behavior of ‘t Hooft bundles when restricted to conics.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"202 ","pages":"Article 103763"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"‘t Hooft bundles on the complete flag threefold and moduli spaces of instantons\",\"authors\":\"Vincenzo Antonelli , Francesco Malaspina , Simone Marchesi , Joan Pons-Llopis\",\"doi\":\"10.1016/j.matpur.2025.103763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we study the moduli spaces of instanton bundles on the flag twistor space <span><math><mi>F</mi><mo>:</mo><mo>=</mo><mi>F</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. We stratify them in terms of the minimal twist supporting global sections and we introduce the notion of (special) ‘t Hooft bundle on <em>F</em>. In particular we prove that there exist <em>μ</em>-stable ‘t Hooft bundles for each admissible charge <em>k</em>. We completely describe the geometric structure of the moduli space of (special) ‘t Hooft bundles for arbitrary charge <em>k</em>. Along the way to reach these goals, we describe the possible structures of multiple curves supported on some rational curves in <em>F</em> as well as the family of del Pezzo surfaces realized as hyperplane sections of <em>F</em>. Finally we investigate the splitting behavior of ‘t Hooft bundles when restricted to conics.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"202 \",\"pages\":\"Article 103763\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001072\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001072","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
‘t Hooft bundles on the complete flag threefold and moduli spaces of instantons
In this work we study the moduli spaces of instanton bundles on the flag twistor space . We stratify them in terms of the minimal twist supporting global sections and we introduce the notion of (special) ‘t Hooft bundle on F. In particular we prove that there exist μ-stable ‘t Hooft bundles for each admissible charge k. We completely describe the geometric structure of the moduli space of (special) ‘t Hooft bundles for arbitrary charge k. Along the way to reach these goals, we describe the possible structures of multiple curves supported on some rational curves in F as well as the family of del Pezzo surfaces realized as hyperplane sections of F. Finally we investigate the splitting behavior of ‘t Hooft bundles when restricted to conics.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.