PtCo合金纳米颗粒锚定在S, p掺杂的分层碳氮化物上的催化协同作用,用于高温pemfc中高效持久的氧还原

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-06-19 DOI:10.1016/j.fuel.2025.136040
Balamurali Ravichandran , Naresh Narayanan , Huiyuan Liu , Weiqi Zhang , Narayanamoorthy Bhuvanendran , Huaneng Su
{"title":"PtCo合金纳米颗粒锚定在S, p掺杂的分层碳氮化物上的催化协同作用,用于高温pemfc中高效持久的氧还原","authors":"Balamurali Ravichandran ,&nbsp;Naresh Narayanan ,&nbsp;Huiyuan Liu ,&nbsp;Weiqi Zhang ,&nbsp;Narayanamoorthy Bhuvanendran ,&nbsp;Huaneng Su","doi":"10.1016/j.fuel.2025.136040","DOIUrl":null,"url":null,"abstract":"<div><div>Intensified electrochemical corrosion under high-temperature and phosphoric acid conditions poses a significant challenge to the catalysts in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). Herein, a S, P-doped hierarchical porous carbon nitride (S, P-HCN) supported PtCo alloy catalyst was developed to address this issue. The multilayered porous structure of S, P-HCN ensures high metal dispersion, a large specific surface area, and enhanced mass transfer. The PtCo/S, P-HCN catalyst exhibits remarkable performance, with specific activity (1.27 mA cm<sub>Pt</sub><sup>-2</sup> at 0.80 V), mass activity (0.51 mA µg<sub>Pt</sub><sup>-1</sup> at 0.80 V), and electrochemical active surface area (ECSA) (39.9 m<sup>2</sup> g<sup>-1</sup><sub>Pt</sub>), surpassing commercial 20 % Pt/C by 2–3 times. Durability tests over 5000 potential cycles reveal excellent retention of mass activity (84 %) and specific activity (83.2 %) at 0.80 V, with only a minor 14 mV shift in half-wave potential. This enhancement stems from the synergistic effects between PtCo alloy nanoparticles and S, P-HCN, which modulate Pt- electronic structure, strengthen metal-support interactions, and boost catalytic efficiency. Single-cell HT-PEMFC studies demonstrate a peak power density of 377.4 mW cm<sup>−2</sup> for PtCo/S, P-HCN, comparable to commercial Pt/C (398 mW cm<sup>−2</sup>), with reduced voltage degradation at low current densities. This work presents a promising approach for improving cathode materials and advancing HT-PEMFC performance.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"402 ","pages":"Article 136040"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic synergy of PtCo alloy nanoparticles anchored on S, P-doped hierarchical carbon nitrides for efficient and durable oxygen reduction in high-temperature PEMFCs\",\"authors\":\"Balamurali Ravichandran ,&nbsp;Naresh Narayanan ,&nbsp;Huiyuan Liu ,&nbsp;Weiqi Zhang ,&nbsp;Narayanamoorthy Bhuvanendran ,&nbsp;Huaneng Su\",\"doi\":\"10.1016/j.fuel.2025.136040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intensified electrochemical corrosion under high-temperature and phosphoric acid conditions poses a significant challenge to the catalysts in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). Herein, a S, P-doped hierarchical porous carbon nitride (S, P-HCN) supported PtCo alloy catalyst was developed to address this issue. The multilayered porous structure of S, P-HCN ensures high metal dispersion, a large specific surface area, and enhanced mass transfer. The PtCo/S, P-HCN catalyst exhibits remarkable performance, with specific activity (1.27 mA cm<sub>Pt</sub><sup>-2</sup> at 0.80 V), mass activity (0.51 mA µg<sub>Pt</sub><sup>-1</sup> at 0.80 V), and electrochemical active surface area (ECSA) (39.9 m<sup>2</sup> g<sup>-1</sup><sub>Pt</sub>), surpassing commercial 20 % Pt/C by 2–3 times. Durability tests over 5000 potential cycles reveal excellent retention of mass activity (84 %) and specific activity (83.2 %) at 0.80 V, with only a minor 14 mV shift in half-wave potential. This enhancement stems from the synergistic effects between PtCo alloy nanoparticles and S, P-HCN, which modulate Pt- electronic structure, strengthen metal-support interactions, and boost catalytic efficiency. Single-cell HT-PEMFC studies demonstrate a peak power density of 377.4 mW cm<sup>−2</sup> for PtCo/S, P-HCN, comparable to commercial Pt/C (398 mW cm<sup>−2</sup>), with reduced voltage degradation at low current densities. This work presents a promising approach for improving cathode materials and advancing HT-PEMFC performance.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"402 \",\"pages\":\"Article 136040\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001623612501765X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001623612501765X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高温和磷酸条件下电化学腐蚀加剧对高温质子交换膜燃料电池(ht - pemfc)催化剂提出了重大挑战。为了解决这一问题,本文开发了一种掺S, p的分层多孔氮化碳(S, P-HCN)负载PtCo合金催化剂。S, P-HCN的多层多孔结构保证了高的金属分散性、大的比表面积和增强的传质。PtCo/S, P-HCN催化剂表现出优异的性能,其比活性(0.80 V时为1.27 mA cmPt-2)、质量活性(0.51 mAµgPt-1)和电化学活性表面积(39.9 m2 g-1Pt)均超过20% Pt/C的2-3倍。超过5000个电位循环的耐久性测试显示,在0.80 V下,质量活性(84%)和比活性(83.2%)保持良好,半波电位只有14 mV的微小位移。这种增强是由于PtCo合金纳米颗粒与S, P-HCN之间的协同作用,它调节了Pt-电子结构,加强了金属-载体相互作用,提高了催化效率。单电池HT-PEMFC研究表明,PtCo/S, P-HCN的峰值功率密度为377.4 mW cm - 2,与商用Pt/C (398 mW cm - 2)相当,并且在低电流密度下降低了电压退化。这项工作为改进阴极材料和提高HT-PEMFC性能提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Catalytic synergy of PtCo alloy nanoparticles anchored on S, P-doped hierarchical carbon nitrides for efficient and durable oxygen reduction in high-temperature PEMFCs

Catalytic synergy of PtCo alloy nanoparticles anchored on S, P-doped hierarchical carbon nitrides for efficient and durable oxygen reduction in high-temperature PEMFCs
Intensified electrochemical corrosion under high-temperature and phosphoric acid conditions poses a significant challenge to the catalysts in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). Herein, a S, P-doped hierarchical porous carbon nitride (S, P-HCN) supported PtCo alloy catalyst was developed to address this issue. The multilayered porous structure of S, P-HCN ensures high metal dispersion, a large specific surface area, and enhanced mass transfer. The PtCo/S, P-HCN catalyst exhibits remarkable performance, with specific activity (1.27 mA cmPt-2 at 0.80 V), mass activity (0.51 mA µgPt-1 at 0.80 V), and electrochemical active surface area (ECSA) (39.9 m2 g-1Pt), surpassing commercial 20 % Pt/C by 2–3 times. Durability tests over 5000 potential cycles reveal excellent retention of mass activity (84 %) and specific activity (83.2 %) at 0.80 V, with only a minor 14 mV shift in half-wave potential. This enhancement stems from the synergistic effects between PtCo alloy nanoparticles and S, P-HCN, which modulate Pt- electronic structure, strengthen metal-support interactions, and boost catalytic efficiency. Single-cell HT-PEMFC studies demonstrate a peak power density of 377.4 mW cm−2 for PtCo/S, P-HCN, comparable to commercial Pt/C (398 mW cm−2), with reduced voltage degradation at low current densities. This work presents a promising approach for improving cathode materials and advancing HT-PEMFC performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信