生物启发磷酸化纤维素纳米晶体为基础的多交联粘合剂增强稳定性和可持续性在硅阳极

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Lan Zhao , Fengcai Lin , Haijun Li , Lingling Qian , Yingshan Shi , Zhiyi Cao , Xuan Yang , Biao Huang , Beili Lu , Hanyang Liu , Lirong Tang
{"title":"生物启发磷酸化纤维素纳米晶体为基础的多交联粘合剂增强稳定性和可持续性在硅阳极","authors":"Lan Zhao ,&nbsp;Fengcai Lin ,&nbsp;Haijun Li ,&nbsp;Lingling Qian ,&nbsp;Yingshan Shi ,&nbsp;Zhiyi Cao ,&nbsp;Xuan Yang ,&nbsp;Biao Huang ,&nbsp;Beili Lu ,&nbsp;Hanyang Liu ,&nbsp;Lirong Tang","doi":"10.1016/j.carbpol.2025.123903","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon (Si) is a promising anode for high-energy-density batteries, but its ~300 % volume expansion causes particle fracture and electrode instability. Effective binders are essential for maintaining electrode integrity. Inspired by the adhesion mechanism of natural ivy, we developed a small-molecule-enhanced polymer binder derived from phosphorylated cellulose nanocrystals (PCNCs) and acrylic acid rosin to enhance the electrochemical and mechanical performance of Si anodes. PCNCs, with their high aspect ratio and surface activity, construct an interconnected three-dimensional (3D) network within the polymer matrix, reinforcing structural stability. Additionally, phosphate groups promote water-based polymer compatibility and ion transport, facilitating efficient lithium-ion conduction. Acrylic acid rosin mimics the adhesion mechanism of <em>Parthenocissus tricuspidata</em>, establishing strong hydrogen bonds, ion-dipole interactions, and covalent crosslinking with Si particles. This incorporation also forms a unique “soft outside, rigid inside” topology, buffering stress, protecting the solid electrolyte interface (SEI), and synergizing with polyacrylic acid (PAA) to form a robust network. The binder provides an excellent electrochemical performance, achieving a high initial coulombic efficiency (86.85 %), superior ionic conductivity (18.825 mS/cm<sup>2</sup>), and remarkable cycling stability at high silicon loading (maintaining 1272 mAh/g after 100 cycles at 0.2C). Its green synthesis and scalability offer a sustainable path for next-generation Si anodes.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"366 ","pages":"Article 123903"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired phosphorylated cellulose nanocrystals-based multi-crosslinked binder for enhanced stability and sustainability in silicon anodes\",\"authors\":\"Lan Zhao ,&nbsp;Fengcai Lin ,&nbsp;Haijun Li ,&nbsp;Lingling Qian ,&nbsp;Yingshan Shi ,&nbsp;Zhiyi Cao ,&nbsp;Xuan Yang ,&nbsp;Biao Huang ,&nbsp;Beili Lu ,&nbsp;Hanyang Liu ,&nbsp;Lirong Tang\",\"doi\":\"10.1016/j.carbpol.2025.123903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon (Si) is a promising anode for high-energy-density batteries, but its ~300 % volume expansion causes particle fracture and electrode instability. Effective binders are essential for maintaining electrode integrity. Inspired by the adhesion mechanism of natural ivy, we developed a small-molecule-enhanced polymer binder derived from phosphorylated cellulose nanocrystals (PCNCs) and acrylic acid rosin to enhance the electrochemical and mechanical performance of Si anodes. PCNCs, with their high aspect ratio and surface activity, construct an interconnected three-dimensional (3D) network within the polymer matrix, reinforcing structural stability. Additionally, phosphate groups promote water-based polymer compatibility and ion transport, facilitating efficient lithium-ion conduction. Acrylic acid rosin mimics the adhesion mechanism of <em>Parthenocissus tricuspidata</em>, establishing strong hydrogen bonds, ion-dipole interactions, and covalent crosslinking with Si particles. This incorporation also forms a unique “soft outside, rigid inside” topology, buffering stress, protecting the solid electrolyte interface (SEI), and synergizing with polyacrylic acid (PAA) to form a robust network. The binder provides an excellent electrochemical performance, achieving a high initial coulombic efficiency (86.85 %), superior ionic conductivity (18.825 mS/cm<sup>2</sup>), and remarkable cycling stability at high silicon loading (maintaining 1272 mAh/g after 100 cycles at 0.2C). Its green synthesis and scalability offer a sustainable path for next-generation Si anodes.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"366 \",\"pages\":\"Article 123903\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725006861\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725006861","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)是一种很有前途的高能量密度电池阳极,但其~ 300%的体积膨胀会导致颗粒断裂和电极不稳定。有效的粘合剂对于保持电极的完整性是必不可少的。受天然常春藤粘附机制的启发,我们开发了一种由磷酸化纤维素纳米晶体(PCNCs)和丙烯酸松香衍生的小分子增强聚合物粘合剂,以增强硅阳极的电化学和力学性能。PCNCs具有高宽高比和表面活性,可以在聚合物基体内构建相互连接的三维(3D)网络,增强结构稳定性。此外,磷酸基团促进了水基聚合物的相容性和离子传输,促进了锂离子的高效传导。丙烯酸松香模拟了孤雌松香的粘附机制,与Si颗粒建立了强氢键、离子偶极相互作用和共价交联。这种结合还形成了独特的“外软内硬”拓扑结构,缓冲应力,保护固体电解质界面(SEI),并与聚丙烯酸(PAA)协同形成坚固的网络。该粘合剂具有优异的电化学性能,具有很高的初始库仑效率(86.85%),优异的离子电导率(18.825 mS/cm2),以及在高硅负载下显著的循环稳定性(在0.2C下循环100次后保持1272 mAh/g)。它的绿色合成和可扩展性为下一代硅阳极提供了一条可持续发展的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired phosphorylated cellulose nanocrystals-based multi-crosslinked binder for enhanced stability and sustainability in silicon anodes
Silicon (Si) is a promising anode for high-energy-density batteries, but its ~300 % volume expansion causes particle fracture and electrode instability. Effective binders are essential for maintaining electrode integrity. Inspired by the adhesion mechanism of natural ivy, we developed a small-molecule-enhanced polymer binder derived from phosphorylated cellulose nanocrystals (PCNCs) and acrylic acid rosin to enhance the electrochemical and mechanical performance of Si anodes. PCNCs, with their high aspect ratio and surface activity, construct an interconnected three-dimensional (3D) network within the polymer matrix, reinforcing structural stability. Additionally, phosphate groups promote water-based polymer compatibility and ion transport, facilitating efficient lithium-ion conduction. Acrylic acid rosin mimics the adhesion mechanism of Parthenocissus tricuspidata, establishing strong hydrogen bonds, ion-dipole interactions, and covalent crosslinking with Si particles. This incorporation also forms a unique “soft outside, rigid inside” topology, buffering stress, protecting the solid electrolyte interface (SEI), and synergizing with polyacrylic acid (PAA) to form a robust network. The binder provides an excellent electrochemical performance, achieving a high initial coulombic efficiency (86.85 %), superior ionic conductivity (18.825 mS/cm2), and remarkable cycling stability at high silicon loading (maintaining 1272 mAh/g after 100 cycles at 0.2C). Its green synthesis and scalability offer a sustainable path for next-generation Si anodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信