代谢机制的计算辅助理解:一个案例研究

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zi-Xuan Wang , Ming-Yu Bai , Xing-Feng Ni , Qian Liu , Nuo Qiao , Meng-Yuan Zhang , Jin Yang , Qing-Qing Li , Ning Huang , Meng Sun , Zong-Hao Zhao , Ning Ding , Yan-Cheng Yu , Xiao-Long Wang , Shan-Liang Sun , Chen-Xiao Shan , Nian-Guang Li , Zhi-Hao Shi
{"title":"代谢机制的计算辅助理解:一个案例研究","authors":"Zi-Xuan Wang ,&nbsp;Ming-Yu Bai ,&nbsp;Xing-Feng Ni ,&nbsp;Qian Liu ,&nbsp;Nuo Qiao ,&nbsp;Meng-Yuan Zhang ,&nbsp;Jin Yang ,&nbsp;Qing-Qing Li ,&nbsp;Ning Huang ,&nbsp;Meng Sun ,&nbsp;Zong-Hao Zhao ,&nbsp;Ning Ding ,&nbsp;Yan-Cheng Yu ,&nbsp;Xiao-Long Wang ,&nbsp;Shan-Liang Sun ,&nbsp;Chen-Xiao Shan ,&nbsp;Nian-Guang Li ,&nbsp;Zhi-Hao Shi","doi":"10.1016/j.rechem.2025.102453","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative computational method, combined with experimental validation, to predict and elucidate the metabolic pathways of <strong>SILA-123</strong>, a novel FLT3 inhibitor. Using UFLC/Q-TOF MS, we identified 21 metabolites generated through key reactions (oxidation, reduction, hydrolysis, cleavage, deamination, and glucuronidation). Advanced computational techniques were applied to identify key metabolic enzymes, with results confirmed experimentally. Our findings represent a significant advancement in the field of metabolic prediction. By integrating computational methods with experimental data, we have established a robust framework that can be applied to other therapeutic compounds. This approach not only enhances our understanding of <strong>SILA-123</strong>'s metabolic pathways but also provides a novel strategy for guiding metabolic prediction.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"16 ","pages":"Article 102453"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational-aided understanding of metabolic mechanism: A case study\",\"authors\":\"Zi-Xuan Wang ,&nbsp;Ming-Yu Bai ,&nbsp;Xing-Feng Ni ,&nbsp;Qian Liu ,&nbsp;Nuo Qiao ,&nbsp;Meng-Yuan Zhang ,&nbsp;Jin Yang ,&nbsp;Qing-Qing Li ,&nbsp;Ning Huang ,&nbsp;Meng Sun ,&nbsp;Zong-Hao Zhao ,&nbsp;Ning Ding ,&nbsp;Yan-Cheng Yu ,&nbsp;Xiao-Long Wang ,&nbsp;Shan-Liang Sun ,&nbsp;Chen-Xiao Shan ,&nbsp;Nian-Guang Li ,&nbsp;Zhi-Hao Shi\",\"doi\":\"10.1016/j.rechem.2025.102453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an innovative computational method, combined with experimental validation, to predict and elucidate the metabolic pathways of <strong>SILA-123</strong>, a novel FLT3 inhibitor. Using UFLC/Q-TOF MS, we identified 21 metabolites generated through key reactions (oxidation, reduction, hydrolysis, cleavage, deamination, and glucuronidation). Advanced computational techniques were applied to identify key metabolic enzymes, with results confirmed experimentally. Our findings represent a significant advancement in the field of metabolic prediction. By integrating computational methods with experimental data, we have established a robust framework that can be applied to other therapeutic compounds. This approach not only enhances our understanding of <strong>SILA-123</strong>'s metabolic pathways but also provides a novel strategy for guiding metabolic prediction.</div></div>\",\"PeriodicalId\":420,\"journal\":{\"name\":\"Results in Chemistry\",\"volume\":\"16 \",\"pages\":\"Article 102453\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211715625004369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625004369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的计算方法,并结合实验验证,预测和阐明了新型FLT3抑制剂SILA-123的代谢途径。使用UFLC/Q-TOF质谱,我们鉴定了21种通过关键反应(氧化、还原、水解、裂解、脱氨和葡萄糖醛酸化)产生的代谢物。应用先进的计算技术鉴定关键代谢酶,实验结果证实。我们的发现代表了代谢预测领域的重大进展。通过将计算方法与实验数据相结合,我们已经建立了一个强大的框架,可以应用于其他治疗性化合物。该方法不仅增强了我们对SILA-123代谢途径的理解,而且为指导代谢预测提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational-aided understanding of metabolic mechanism: A case study

Computational-aided understanding of metabolic mechanism: A case study
This study presents an innovative computational method, combined with experimental validation, to predict and elucidate the metabolic pathways of SILA-123, a novel FLT3 inhibitor. Using UFLC/Q-TOF MS, we identified 21 metabolites generated through key reactions (oxidation, reduction, hydrolysis, cleavage, deamination, and glucuronidation). Advanced computational techniques were applied to identify key metabolic enzymes, with results confirmed experimentally. Our findings represent a significant advancement in the field of metabolic prediction. By integrating computational methods with experimental data, we have established a robust framework that can be applied to other therapeutic compounds. This approach not only enhances our understanding of SILA-123's metabolic pathways but also provides a novel strategy for guiding metabolic prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信