Syed Shaheen Shah , Md. Abdul Aziz , Takaya Ogawa , Laiq Zada , Mohsin Ali Marwat , Syed Muhammad Abdullah , Abdul Jabbar Khan , Muhammad Usman , Ibrahim Khan , Zafar Said , Munetaka Oyama
{"title":"革命性的NiCo层状双氢氧化物电极:高性能超级电容器的进展、挑战和未来前景","authors":"Syed Shaheen Shah , Md. Abdul Aziz , Takaya Ogawa , Laiq Zada , Mohsin Ali Marwat , Syed Muhammad Abdullah , Abdul Jabbar Khan , Muhammad Usman , Ibrahim Khan , Zafar Said , Munetaka Oyama","doi":"10.1016/j.mser.2025.101041","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global energy demand and transition to renewable sources emphasize the critical need for advanced energy storage technologies. Supercapacitors, with their high power density, rapid charge/discharge rates, and long cycle life, have emerged as a promising solution. Among various electrode materials, NiCo layered double hydroxides (NiCoLDHs) are particularly notable due to their tunable composition, large surface area, high electrical conductivity, multiple redox states, and exceptional redox activity. This review comprehensively explores the structural and electrochemical properties of NiCoLDHs, highlighting recent advancements in their development as revolutionary electrode materials for supercapacitors. Strategies for enhancing capacitance, such as doping with metals/non-metals, hybridization with carbon materials (e.g., graphene, carbon nanotubes, biomass-derived carbon), and integration with metal oxides, sulfides, selenides, MXenes, MOFs, and conducting polymers, are systematically discussed. Additionally, synthetic methodologies and their impact on electrochemical performance are explored. Current challenges, including scalable synthesis, structural stability, and enhanced energy and power densities, are addressed. Insights from computational modeling and density functional theory provide guidance for optimizing performance at commercial scales. This work provides an overview of advances in NiCoLDHs for next-generation, cost-effective, and sustainable energy storage devices.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101041"},"PeriodicalIF":31.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionary NiCo layered double hydroxide electrodes: Advances, challenges, and future prospects for high-performance supercapacitors\",\"authors\":\"Syed Shaheen Shah , Md. Abdul Aziz , Takaya Ogawa , Laiq Zada , Mohsin Ali Marwat , Syed Muhammad Abdullah , Abdul Jabbar Khan , Muhammad Usman , Ibrahim Khan , Zafar Said , Munetaka Oyama\",\"doi\":\"10.1016/j.mser.2025.101041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing global energy demand and transition to renewable sources emphasize the critical need for advanced energy storage technologies. Supercapacitors, with their high power density, rapid charge/discharge rates, and long cycle life, have emerged as a promising solution. Among various electrode materials, NiCo layered double hydroxides (NiCoLDHs) are particularly notable due to their tunable composition, large surface area, high electrical conductivity, multiple redox states, and exceptional redox activity. This review comprehensively explores the structural and electrochemical properties of NiCoLDHs, highlighting recent advancements in their development as revolutionary electrode materials for supercapacitors. Strategies for enhancing capacitance, such as doping with metals/non-metals, hybridization with carbon materials (e.g., graphene, carbon nanotubes, biomass-derived carbon), and integration with metal oxides, sulfides, selenides, MXenes, MOFs, and conducting polymers, are systematically discussed. Additionally, synthetic methodologies and their impact on electrochemical performance are explored. Current challenges, including scalable synthesis, structural stability, and enhanced energy and power densities, are addressed. Insights from computational modeling and density functional theory provide guidance for optimizing performance at commercial scales. This work provides an overview of advances in NiCoLDHs for next-generation, cost-effective, and sustainable energy storage devices.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"166 \",\"pages\":\"Article 101041\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X25001184\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001184","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Revolutionary NiCo layered double hydroxide electrodes: Advances, challenges, and future prospects for high-performance supercapacitors
The increasing global energy demand and transition to renewable sources emphasize the critical need for advanced energy storage technologies. Supercapacitors, with their high power density, rapid charge/discharge rates, and long cycle life, have emerged as a promising solution. Among various electrode materials, NiCo layered double hydroxides (NiCoLDHs) are particularly notable due to their tunable composition, large surface area, high electrical conductivity, multiple redox states, and exceptional redox activity. This review comprehensively explores the structural and electrochemical properties of NiCoLDHs, highlighting recent advancements in their development as revolutionary electrode materials for supercapacitors. Strategies for enhancing capacitance, such as doping with metals/non-metals, hybridization with carbon materials (e.g., graphene, carbon nanotubes, biomass-derived carbon), and integration with metal oxides, sulfides, selenides, MXenes, MOFs, and conducting polymers, are systematically discussed. Additionally, synthetic methodologies and their impact on electrochemical performance are explored. Current challenges, including scalable synthesis, structural stability, and enhanced energy and power densities, are addressed. Insights from computational modeling and density functional theory provide guidance for optimizing performance at commercial scales. This work provides an overview of advances in NiCoLDHs for next-generation, cost-effective, and sustainable energy storage devices.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.