{"title":"人工智能和生物传感器:改变癌症诊断","authors":"Maryam Althobiti , Trinh Thi Trang Nhung , Swati Verma , Raef R. Albugami , Rajender Kumar","doi":"10.1016/j.medntd.2025.100378","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer is one of the leading causes of death worldwide. Early detection of cancer can play a decisive role in cancer treatment and improving survival rates. Conventional cancer detection methods, such as biopsy, imaging and blood tests are generally invasive and time-consuming, and their results have accuracy issues. Biosensors with artificial intelligence integration play a significant and evolving role in cancer diagnostics, offering non-invasive, rapid, and highly sensitive methods for early detection, monitoring, and treatment of cancer. Biosensors detect specific biomarkers associated with cancerous cells or tumours, such as nucleic acid (DNA, RNA), small molecules, peptides, proteins and metabolites. In recent years, many predictive artificial intelligence models and bioinformatics tools have been developed to integrate biosensors, emerging as powerful tools for cancer diagnostics. This review explores the role of biosensors in cancer detection, the development and application of predictive AI models and bioinformatics tools in cancer detection through biosensor technologies, and the challenges associated with their clinical adoption.</div></div>","PeriodicalId":33783,"journal":{"name":"Medicine in Novel Technology and Devices","volume":"27 ","pages":"Article 100378"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and biosensors: Transforming cancer diagnostics\",\"authors\":\"Maryam Althobiti , Trinh Thi Trang Nhung , Swati Verma , Raef R. Albugami , Rajender Kumar\",\"doi\":\"10.1016/j.medntd.2025.100378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cancer is one of the leading causes of death worldwide. Early detection of cancer can play a decisive role in cancer treatment and improving survival rates. Conventional cancer detection methods, such as biopsy, imaging and blood tests are generally invasive and time-consuming, and their results have accuracy issues. Biosensors with artificial intelligence integration play a significant and evolving role in cancer diagnostics, offering non-invasive, rapid, and highly sensitive methods for early detection, monitoring, and treatment of cancer. Biosensors detect specific biomarkers associated with cancerous cells or tumours, such as nucleic acid (DNA, RNA), small molecules, peptides, proteins and metabolites. In recent years, many predictive artificial intelligence models and bioinformatics tools have been developed to integrate biosensors, emerging as powerful tools for cancer diagnostics. This review explores the role of biosensors in cancer detection, the development and application of predictive AI models and bioinformatics tools in cancer detection through biosensor technologies, and the challenges associated with their clinical adoption.</div></div>\",\"PeriodicalId\":33783,\"journal\":{\"name\":\"Medicine in Novel Technology and Devices\",\"volume\":\"27 \",\"pages\":\"Article 100378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine in Novel Technology and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590093525000293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Novel Technology and Devices","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590093525000293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Artificial intelligence and biosensors: Transforming cancer diagnostics
Cancer is one of the leading causes of death worldwide. Early detection of cancer can play a decisive role in cancer treatment and improving survival rates. Conventional cancer detection methods, such as biopsy, imaging and blood tests are generally invasive and time-consuming, and their results have accuracy issues. Biosensors with artificial intelligence integration play a significant and evolving role in cancer diagnostics, offering non-invasive, rapid, and highly sensitive methods for early detection, monitoring, and treatment of cancer. Biosensors detect specific biomarkers associated with cancerous cells or tumours, such as nucleic acid (DNA, RNA), small molecules, peptides, proteins and metabolites. In recent years, many predictive artificial intelligence models and bioinformatics tools have been developed to integrate biosensors, emerging as powerful tools for cancer diagnostics. This review explores the role of biosensors in cancer detection, the development and application of predictive AI models and bioinformatics tools in cancer detection through biosensor technologies, and the challenges associated with their clinical adoption.