李型有限例外群中的2-极小子群

IF 0.8 2区 数学 Q2 MATHEMATICS
Chris Parker , Peter Rowley
{"title":"李型有限例外群中的2-极小子群","authors":"Chris Parker ,&nbsp;Peter Rowley","doi":"10.1016/j.jalgebra.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose <em>G</em> is a finite group, <em>S</em> a Sylow 2-subgroup of <em>G</em> and <span><math><mi>B</mi><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. Then a subgroup <em>P</em> of <em>G</em> is a 2-minimal subgroup of <em>G</em> with respect to <em>B</em> if and only if <em>B</em> is contained in a unique maximal subgroup of <em>P</em>. Here the 2-minimal subgroups of the finite simple groups of exceptional Lie type are classified. This classification yields detailed descriptions of the 2-minimal subgroups and, by way of illustration, we list explicitly the 2-minimal subgroups for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mn>19</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>(</mo><msup><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>(</mo><mn>11</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 367-400"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-minimal subgroups in finite exceptional groups of Lie type\",\"authors\":\"Chris Parker ,&nbsp;Peter Rowley\",\"doi\":\"10.1016/j.jalgebra.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suppose <em>G</em> is a finite group, <em>S</em> a Sylow 2-subgroup of <em>G</em> and <span><math><mi>B</mi><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. Then a subgroup <em>P</em> of <em>G</em> is a 2-minimal subgroup of <em>G</em> with respect to <em>B</em> if and only if <em>B</em> is contained in a unique maximal subgroup of <em>P</em>. Here the 2-minimal subgroups of the finite simple groups of exceptional Lie type are classified. This classification yields detailed descriptions of the 2-minimal subgroups and, by way of illustration, we list explicitly the 2-minimal subgroups for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mn>19</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>(</mo><msup><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>(</mo><mn>11</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"681 \",\"pages\":\"Pages 367-400\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003564\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003564","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是有限群,S是G的Sylow 2-子群,B=NG(S)。则G的子群P是G关于B的2-极小子群,当且仅当B包含在P的唯一极大子群中。本文给出了例外Lie型有限简单群的2-极小子群的分类。这种分类产生了2-极小子群的详细描述,通过说明,我们明确列出了G2(3), F4(3), E6(19), E7(53)和E8(11)的2-极小子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-minimal subgroups in finite exceptional groups of Lie type
Suppose G is a finite group, S a Sylow 2-subgroup of G and B=NG(S). Then a subgroup P of G is a 2-minimal subgroup of G with respect to B if and only if B is contained in a unique maximal subgroup of P. Here the 2-minimal subgroups of the finite simple groups of exceptional Lie type are classified. This classification yields detailed descriptions of the 2-minimal subgroups and, by way of illustration, we list explicitly the 2-minimal subgroups for G2(3), F4(3), E6(19), E7(53) and E8(11).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信