钢筋锈蚀对历史建筑的影响:优化石灰石性能

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Fadwa Jroundi , Cristina Povedano-Priego , Mohamed L. Merroun , María Teresa González-Muñoz , Carlos Rodriguez-Navarro
{"title":"钢筋锈蚀对历史建筑的影响:优化石灰石性能","authors":"Fadwa Jroundi ,&nbsp;Cristina Povedano-Priego ,&nbsp;Mohamed L. Merroun ,&nbsp;María Teresa González-Muñoz ,&nbsp;Carlos Rodriguez-Navarro","doi":"10.1016/j.jobe.2025.113203","DOIUrl":null,"url":null,"abstract":"<div><div>Iron bar corrosion in ancient limestone buildings and sculptures causes severe damage, yet the underlying mechanisms and microbial contributions remain poorly understood. This study examined heavily deteriorated pinnacles from a 16th-century building in Granada, Spain, combining mineralogical, compositional, textural and metagenomic analyses. A highly diverse microbial community was identified, including iron-oxidizing [e.g., <em>Massilia</em> (4.59 %) and <em>Ralstonia</em> (&lt;1 %)], sulfate-reducing [SRB, e.g., <em>Desulfovibrio</em> (&lt;1 %) and <em>Clostridium</em> (1.43 %)], and nitrate-reducing [e.g., <em>Pseudomonas</em> (22.93 %) and <em>Staphylococcus</em> (2.53 %)] bacteria. The degradation process initiates by (bio)corrosion of embedded iron bars, followed by SRB-induced <em>in situ</em> (authigenic) framboidal pyrite formation under anoxic conditions, in the presence of sulfates from pollution-derived gypsum. Pyrite is then bacterially oxidized into goethite pseudomorphs under fluctuating aerobic and anoxic conditions, triggering a localized acid mine drainage-like process. This results in significant limestone dissolution and structural instability. These findings highlight the crucial role of microbial activity and reveal previously unrecognized pathways in stone degradation. Understanding such processes offer valuable insights for improving conservation strategies of cultural heritage.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"111 ","pages":"Article 113203"},"PeriodicalIF":6.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the influence of reinforcing iron bars corrosion on historical buildings: Towards optimizing limestone performance\",\"authors\":\"Fadwa Jroundi ,&nbsp;Cristina Povedano-Priego ,&nbsp;Mohamed L. Merroun ,&nbsp;María Teresa González-Muñoz ,&nbsp;Carlos Rodriguez-Navarro\",\"doi\":\"10.1016/j.jobe.2025.113203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iron bar corrosion in ancient limestone buildings and sculptures causes severe damage, yet the underlying mechanisms and microbial contributions remain poorly understood. This study examined heavily deteriorated pinnacles from a 16th-century building in Granada, Spain, combining mineralogical, compositional, textural and metagenomic analyses. A highly diverse microbial community was identified, including iron-oxidizing [e.g., <em>Massilia</em> (4.59 %) and <em>Ralstonia</em> (&lt;1 %)], sulfate-reducing [SRB, e.g., <em>Desulfovibrio</em> (&lt;1 %) and <em>Clostridium</em> (1.43 %)], and nitrate-reducing [e.g., <em>Pseudomonas</em> (22.93 %) and <em>Staphylococcus</em> (2.53 %)] bacteria. The degradation process initiates by (bio)corrosion of embedded iron bars, followed by SRB-induced <em>in situ</em> (authigenic) framboidal pyrite formation under anoxic conditions, in the presence of sulfates from pollution-derived gypsum. Pyrite is then bacterially oxidized into goethite pseudomorphs under fluctuating aerobic and anoxic conditions, triggering a localized acid mine drainage-like process. This results in significant limestone dissolution and structural instability. These findings highlight the crucial role of microbial activity and reveal previously unrecognized pathways in stone degradation. Understanding such processes offer valuable insights for improving conservation strategies of cultural heritage.</div></div>\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"111 \",\"pages\":\"Article 113203\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352710225014408\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225014408","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

古代石灰石建筑和雕塑中的铁棒腐蚀会造成严重的破坏,但潜在的机制和微生物的作用仍然知之甚少。这项研究结合矿物学、成分、纹理和宏基因组学分析,检查了西班牙格拉纳达一座16世纪建筑中严重受损的尖塔。鉴定出高度多样化的微生物群落,包括铁氧化菌[如马氏菌(4.59%)和拉尔斯顿菌(< 1%)]、硫酸盐还原菌[SRB,如脱硫弧菌(< 1%)和梭菌(1.43%)]和硝酸盐还原菌[如假单胞菌(22.93%)和葡萄球菌(2.53%)]。降解过程首先由埋入铁棒的(生物)腐蚀开始,然后在缺氧条件下,在污染石膏中产生的硫酸盐存在的情况下,srb诱导原位(自生)草莓状黄铁矿形成。然后,在波动的好氧和缺氧条件下,黄铁矿被细菌氧化成针铁矿假晶,引发局部酸性矿山排水过程。这导致了显著的石灰石溶解和结构不稳定。这些发现突出了微生物活动的关键作用,揭示了以前未被认识的石头降解途径。了解这一过程为改进文化遗产保护策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into the influence of reinforcing iron bars corrosion on historical buildings: Towards optimizing limestone performance
Iron bar corrosion in ancient limestone buildings and sculptures causes severe damage, yet the underlying mechanisms and microbial contributions remain poorly understood. This study examined heavily deteriorated pinnacles from a 16th-century building in Granada, Spain, combining mineralogical, compositional, textural and metagenomic analyses. A highly diverse microbial community was identified, including iron-oxidizing [e.g., Massilia (4.59 %) and Ralstonia (<1 %)], sulfate-reducing [SRB, e.g., Desulfovibrio (<1 %) and Clostridium (1.43 %)], and nitrate-reducing [e.g., Pseudomonas (22.93 %) and Staphylococcus (2.53 %)] bacteria. The degradation process initiates by (bio)corrosion of embedded iron bars, followed by SRB-induced in situ (authigenic) framboidal pyrite formation under anoxic conditions, in the presence of sulfates from pollution-derived gypsum. Pyrite is then bacterially oxidized into goethite pseudomorphs under fluctuating aerobic and anoxic conditions, triggering a localized acid mine drainage-like process. This results in significant limestone dissolution and structural instability. These findings highlight the crucial role of microbial activity and reveal previously unrecognized pathways in stone degradation. Understanding such processes offer valuable insights for improving conservation strategies of cultural heritage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信