磁悬浮运动平台超精密定位的前馈自适应神经网络控制

IF 3.7 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Jinhe Yang , Peng Jiang , Tongjian Guo , Yi Yu , Quanliang Dong , Xiaoming Wang
{"title":"磁悬浮运动平台超精密定位的前馈自适应神经网络控制","authors":"Jinhe Yang ,&nbsp;Peng Jiang ,&nbsp;Tongjian Guo ,&nbsp;Yi Yu ,&nbsp;Quanliang Dong ,&nbsp;Xiaoming Wang","doi":"10.1016/j.precisioneng.2025.05.024","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this study is to develop a feedforward-adaptive neural network controller (F-ANNC) for precise trajectory tracking and robust disturbance rejection in magnetic levitation motion stage (MLMS) systems. Initially, the dynamic behavior of the MLMS is modeled to capture the fundamental characteristics of the system. The F-ANNC is then constructed by integrating model-based high-order trajectory feedforward control with an adaptive neural network (ANN) compensator and a linear feedback controller. The neural network component is designed using a multi-layer radial basis function neural network (ML-RBF-NN), enabling adaptive estimation and compensation for system uncertainties and external disturbances. This approach allows the neural network to dynamically adjust based on changes in system behavior without requiring precise system parameter settings. The adaptive control laws are derived from Lyapunov stability theory, ensuring both system stability and robustness. Extensive simulations and experiments validate the proposed F-ANNC, demonstrating its superior performance in managing parameter uncertainties and external disturbances, thereby confirming its effectiveness in ultra-precision MLMS applications.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"96 ","pages":"Pages 212-226"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedforward-adaptive neural network control for ultra-precision positioning in magnetic levitation motion stages\",\"authors\":\"Jinhe Yang ,&nbsp;Peng Jiang ,&nbsp;Tongjian Guo ,&nbsp;Yi Yu ,&nbsp;Quanliang Dong ,&nbsp;Xiaoming Wang\",\"doi\":\"10.1016/j.precisioneng.2025.05.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The objective of this study is to develop a feedforward-adaptive neural network controller (F-ANNC) for precise trajectory tracking and robust disturbance rejection in magnetic levitation motion stage (MLMS) systems. Initially, the dynamic behavior of the MLMS is modeled to capture the fundamental characteristics of the system. The F-ANNC is then constructed by integrating model-based high-order trajectory feedforward control with an adaptive neural network (ANN) compensator and a linear feedback controller. The neural network component is designed using a multi-layer radial basis function neural network (ML-RBF-NN), enabling adaptive estimation and compensation for system uncertainties and external disturbances. This approach allows the neural network to dynamically adjust based on changes in system behavior without requiring precise system parameter settings. The adaptive control laws are derived from Lyapunov stability theory, ensuring both system stability and robustness. Extensive simulations and experiments validate the proposed F-ANNC, demonstrating its superior performance in managing parameter uncertainties and external disturbances, thereby confirming its effectiveness in ultra-precision MLMS applications.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"96 \",\"pages\":\"Pages 212-226\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014163592500176X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014163592500176X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是开发一种前馈自适应神经网络控制器(F-ANNC),用于磁悬浮运动平台(MLMS)系统的精确轨迹跟踪和鲁棒抗干扰。首先,对MLMS的动态行为进行建模,以捕获系统的基本特征。然后,将基于模型的高阶轨迹前馈控制与自适应神经网络补偿器和线性反馈控制器相结合,构建F-ANNC。神经网络组件采用多层径向基函数神经网络(ML-RBF-NN)设计,能够对系统不确定性和外部干扰进行自适应估计和补偿。这种方法允许神经网络根据系统行为的变化动态调整,而不需要精确的系统参数设置。自适应控制律由李雅普诺夫稳定性理论推导,保证了系统的稳定性和鲁棒性。大量的仿真和实验验证了所提出的F-ANNC,证明了其在管理参数不确定性和外部干扰方面的优越性能,从而证实了其在超精密MLMS应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedforward-adaptive neural network control for ultra-precision positioning in magnetic levitation motion stages
The objective of this study is to develop a feedforward-adaptive neural network controller (F-ANNC) for precise trajectory tracking and robust disturbance rejection in magnetic levitation motion stage (MLMS) systems. Initially, the dynamic behavior of the MLMS is modeled to capture the fundamental characteristics of the system. The F-ANNC is then constructed by integrating model-based high-order trajectory feedforward control with an adaptive neural network (ANN) compensator and a linear feedback controller. The neural network component is designed using a multi-layer radial basis function neural network (ML-RBF-NN), enabling adaptive estimation and compensation for system uncertainties and external disturbances. This approach allows the neural network to dynamically adjust based on changes in system behavior without requiring precise system parameter settings. The adaptive control laws are derived from Lyapunov stability theory, ensuring both system stability and robustness. Extensive simulations and experiments validate the proposed F-ANNC, demonstrating its superior performance in managing parameter uncertainties and external disturbances, thereby confirming its effectiveness in ultra-precision MLMS applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信