Phulladweepa Patra, Somnath Ghosh* and Sourav Laha*,
{"title":"探索协同作用:Pd/HyMn0.8Co0.2O2纳米复合材料增强整体水分解以实现可持续的绿色制氢","authors":"Phulladweepa Patra, Somnath Ghosh* and Sourav Laha*, ","doi":"10.1021/acs.energyfuels.5c0087910.1021/acs.energyfuels.5c00879","DOIUrl":null,"url":null,"abstract":"<p >H<sub><i>y</i></sub>Mn<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> nanosheets (H<sub><i>y</i></sub>MnCoO<sub>2</sub> NS) exhibit encouraging electrocatalytic Hydrogen Evolution Reaction (HER) activity but limited Oxygen Evolution Reaction (OER) performance in an alkaline medium. However, the incorporation of palladium nanoparticles (Pd NPs) onto the H<sub><i>y</i></sub>MnCoO<sub>2</sub> NS demonstrates improved and stable HER/OER as well as overall water splitting (OWS) by the composite (Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub>). A strongly coupled metal/metal oxide synergy imparts efficient bifunctional catalytic activity in the composite. The Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub> composite achieves a current density (<i>j</i>) of 10 mA cm<sup>–2</sup> in a 1.0 M KOH electrolyte with an applied overpotential of 210 mV for HER and 390 mV for OER and retains stable performance for ∼24 h. A two-electrode Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub>||Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub> electrolyzer efficiently performs the OWS at a cell voltage of 2.0 V, operating continuously for ∼120 h without significant change in current density, highlighting a cost-effective and scalable electrolyzer fabrication. Enhanced mass activity (MA), electrochemical active surface area (ECSA), turnover frequency (TOF), and Faradaic efficiency (FA) underscore the catalyst’s potential for practical applications. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and density functional theory (DFT) studies reveal strong interfacial coupling between Pd NPs and H<sub><i>y</i></sub>MnCoO<sub>2</sub> NS, modulating the electronic structure and enhancing catalytic activity. This work underscores the promise of a strongly coupled metal/metal oxide system as an economical alternative to a fully noble metal-based electrocatalyst for water splitting applications. The Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub>||Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub> electrolyzer when connected to a 3.00 V solar panel under daylight demonstrates encouraging OWS paving the way for sustainable green hydrogen production.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 24","pages":"11926–11937 11926–11937"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Synergy: Pd/HyMn0.8Co0.2O2 Nanocomposite for Enhanced Overall Water Splitting toward Sustainable Green Hydrogen Production\",\"authors\":\"Phulladweepa Patra, Somnath Ghosh* and Sourav Laha*, \",\"doi\":\"10.1021/acs.energyfuels.5c0087910.1021/acs.energyfuels.5c00879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >H<sub><i>y</i></sub>Mn<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> nanosheets (H<sub><i>y</i></sub>MnCoO<sub>2</sub> NS) exhibit encouraging electrocatalytic Hydrogen Evolution Reaction (HER) activity but limited Oxygen Evolution Reaction (OER) performance in an alkaline medium. However, the incorporation of palladium nanoparticles (Pd NPs) onto the H<sub><i>y</i></sub>MnCoO<sub>2</sub> NS demonstrates improved and stable HER/OER as well as overall water splitting (OWS) by the composite (Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub>). A strongly coupled metal/metal oxide synergy imparts efficient bifunctional catalytic activity in the composite. The Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub> composite achieves a current density (<i>j</i>) of 10 mA cm<sup>–2</sup> in a 1.0 M KOH electrolyte with an applied overpotential of 210 mV for HER and 390 mV for OER and retains stable performance for ∼24 h. A two-electrode Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub>||Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub> electrolyzer efficiently performs the OWS at a cell voltage of 2.0 V, operating continuously for ∼120 h without significant change in current density, highlighting a cost-effective and scalable electrolyzer fabrication. Enhanced mass activity (MA), electrochemical active surface area (ECSA), turnover frequency (TOF), and Faradaic efficiency (FA) underscore the catalyst’s potential for practical applications. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and density functional theory (DFT) studies reveal strong interfacial coupling between Pd NPs and H<sub><i>y</i></sub>MnCoO<sub>2</sub> NS, modulating the electronic structure and enhancing catalytic activity. This work underscores the promise of a strongly coupled metal/metal oxide system as an economical alternative to a fully noble metal-based electrocatalyst for water splitting applications. The Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub>||Pd/H<sub><i>y</i></sub>MnCoO<sub>2</sub> electrolyzer when connected to a 3.00 V solar panel under daylight demonstrates encouraging OWS paving the way for sustainable green hydrogen production.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 24\",\"pages\":\"11926–11937 11926–11937\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00879\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00879","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
HyMn0.8Co0.2O2纳米片(HyMnCoO2 NS)在碱性介质中表现出良好的电催化析氢反应(HER)活性,但析氧反应(OER)性能有限。然而,钯纳米粒子(Pd NPs)掺入HyMnCoO2 NS表明,复合材料(Pd/HyMnCoO2)改善和稳定的HER/OER以及整体水分解(OWS)。强耦合的金属/金属氧化物协同作用赋予复合材料高效的双功能催化活性。Pd/HyMnCoO2复合材料在1.0 M KOH的电解液中实现了10 mA cm-2的电流密度(j), HER的过电位为210 mV, OER的过电位为390 mV,并保持了约24小时的稳定性能。双电极Pd/HyMnCoO2||Pd/HyMnCoO2电解槽在2.0 V的电池电压下有效地执行OWS,连续工作约120小时,电流密度没有显着变化,突出了成本效益和可扩展的电解槽制造。提高的质量活性(MA)、电化学活性表面积(ECSA)、周转率(TOF)和法拉第效率(FA)强调了催化剂的实际应用潜力。x射线光电子能谱(XPS)、拉曼光谱(Raman)和密度泛函理论(DFT)研究表明,Pd NPs和HyMnCoO2 NS之间存在强的界面耦合,从而调节了电子结构,增强了催化活性。这项工作强调了强耦合金属/金属氧化物体系作为全贵金属基电催化剂在水分解应用中的经济替代品的前景。Pd/HyMnCoO2电解槽在日光下连接到3.00 V太阳能电池板时,展示了令人鼓舞的OWS,为可持续的绿色氢气生产铺平了道路。
Exploring Synergy: Pd/HyMn0.8Co0.2O2 Nanocomposite for Enhanced Overall Water Splitting toward Sustainable Green Hydrogen Production
HyMn0.8Co0.2O2 nanosheets (HyMnCoO2 NS) exhibit encouraging electrocatalytic Hydrogen Evolution Reaction (HER) activity but limited Oxygen Evolution Reaction (OER) performance in an alkaline medium. However, the incorporation of palladium nanoparticles (Pd NPs) onto the HyMnCoO2 NS demonstrates improved and stable HER/OER as well as overall water splitting (OWS) by the composite (Pd/HyMnCoO2). A strongly coupled metal/metal oxide synergy imparts efficient bifunctional catalytic activity in the composite. The Pd/HyMnCoO2 composite achieves a current density (j) of 10 mA cm–2 in a 1.0 M KOH electrolyte with an applied overpotential of 210 mV for HER and 390 mV for OER and retains stable performance for ∼24 h. A two-electrode Pd/HyMnCoO2||Pd/HyMnCoO2 electrolyzer efficiently performs the OWS at a cell voltage of 2.0 V, operating continuously for ∼120 h without significant change in current density, highlighting a cost-effective and scalable electrolyzer fabrication. Enhanced mass activity (MA), electrochemical active surface area (ECSA), turnover frequency (TOF), and Faradaic efficiency (FA) underscore the catalyst’s potential for practical applications. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and density functional theory (DFT) studies reveal strong interfacial coupling between Pd NPs and HyMnCoO2 NS, modulating the electronic structure and enhancing catalytic activity. This work underscores the promise of a strongly coupled metal/metal oxide system as an economical alternative to a fully noble metal-based electrocatalyst for water splitting applications. The Pd/HyMnCoO2||Pd/HyMnCoO2 electrolyzer when connected to a 3.00 V solar panel under daylight demonstrates encouraging OWS paving the way for sustainable green hydrogen production.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.