在锂离子催化的电化学氨合成中,合适的质子供体可以促进氮化锂(Li3N)的生成

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Victor Azumah, Lance Kavalsky, Venkatasubramanian Viswanathan
{"title":"在锂离子催化的电化学氨合成中,合适的质子供体可以促进氮化锂(Li3N)的生成","authors":"Victor Azumah, Lance Kavalsky, Venkatasubramanian Viswanathan","doi":"10.1016/j.jcat.2025.116250","DOIUrl":null,"url":null,"abstract":"Lithium-mediated electrochemical ammonia synthesis (LiMEAS) hinges on the formation of lithium nitride (Li<sub>3</sub>N) from dissociated nitrogen at a lithium surface. Although proton donors (PDs) are known to influence nitrogen activation, their specific role in promoting Li<sub>3</sub>N formation is still being investigated. Herein, we employ density functional theory (DFT) to examine the effects of 14 PDs on the stability and energetics of Li<sub>3</sub>N formation. We show that in the absence of PD, Li<sub>3</sub>N formation is consistently outcompeted by subsurface N<sub>2</sub> embedding and, in some cases, by surface N<sub>2</sub> adsorption. However, the introduction of PD species yields three distinct outcomes: (i) the PD remains intact during Li<sub>3</sub>N formation, (ii) the PD protonates Li<sub>3</sub>N, or (iii) the PD undergoes structural change. Notably, configurations in which the PD remains intact exhibited greater stability compared to subsurface embedding, driven by PD-induced surface reconstruction. We quantify this reconstruction using a two-layer displacement metric and find a strong correlation between the magnitude of displacement and the system’s overall stability. Further charge analyses show that the enhanced Li<sub>3</sub>N stability correlates with a greater electron transfer to nitrogen. Finally, we link the basicity, acidity and polarity of PD with the results of the formation of nitride, demonstrating that the basicity of PD promotes intact configurations Li<sub>3</sub>N. In contrast, higher acidity and polarity lead to protonation and alteration of PD. These insights pinpoint a region in the Kamlet–Taft <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B2;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 573.5 1047.3\" width=\"1.332ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B2\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">β</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">β</mi></math></script></span>–<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3C0;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 573.5 600.2\" width=\"1.332ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">π</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">π</mi></math></script></span> space where PDs remain intact and foster stable Li<sub>3</sub>N, informing future strategies to design more efficient LiMEAS systems.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"4 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium nitride (Li3N) formation in lithium-mediated electrochemical ammonia synthesis can Be enhanced with the right proton donor\",\"authors\":\"Victor Azumah, Lance Kavalsky, Venkatasubramanian Viswanathan\",\"doi\":\"10.1016/j.jcat.2025.116250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-mediated electrochemical ammonia synthesis (LiMEAS) hinges on the formation of lithium nitride (Li<sub>3</sub>N) from dissociated nitrogen at a lithium surface. Although proton donors (PDs) are known to influence nitrogen activation, their specific role in promoting Li<sub>3</sub>N formation is still being investigated. Herein, we employ density functional theory (DFT) to examine the effects of 14 PDs on the stability and energetics of Li<sub>3</sub>N formation. We show that in the absence of PD, Li<sub>3</sub>N formation is consistently outcompeted by subsurface N<sub>2</sub> embedding and, in some cases, by surface N<sub>2</sub> adsorption. However, the introduction of PD species yields three distinct outcomes: (i) the PD remains intact during Li<sub>3</sub>N formation, (ii) the PD protonates Li<sub>3</sub>N, or (iii) the PD undergoes structural change. Notably, configurations in which the PD remains intact exhibited greater stability compared to subsurface embedding, driven by PD-induced surface reconstruction. We quantify this reconstruction using a two-layer displacement metric and find a strong correlation between the magnitude of displacement and the system’s overall stability. Further charge analyses show that the enhanced Li<sub>3</sub>N stability correlates with a greater electron transfer to nitrogen. Finally, we link the basicity, acidity and polarity of PD with the results of the formation of nitride, demonstrating that the basicity of PD promotes intact configurations Li<sub>3</sub>N. In contrast, higher acidity and polarity lead to protonation and alteration of PD. These insights pinpoint a region in the Kamlet–Taft <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x3B2;&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 573.5 1047.3\\\" width=\\\"1.332ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3B2\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">β</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">β</mi></math></script></span>–<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x3C0;&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.394ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -498.8 573.5 600.2\\\" width=\\\"1.332ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3C0\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">π</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">π</mi></math></script></span> space where PDs remain intact and foster stable Li<sub>3</sub>N, informing future strategies to design more efficient LiMEAS systems.\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcat.2025.116250\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.116250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂离子催化的电化学氨合成(limas)依赖于锂离子表面解离的氮生成氮化锂(Li3N)。虽然已知质子供体(pd)会影响氮的活化,但它们在促进Li3N形成中的具体作用仍在研究中。本文采用密度泛函理论(DFT)研究了14种pd对Li3N形成稳定性和能量学的影响。我们发现,在没有PD的情况下,Li3N的形成一直被地下氮气包埋所取代,在某些情况下,被表面氮气吸附所取代。然而,PD物种的引入产生了三种不同的结果:(i) PD在Li3N形成过程中保持完整,(ii) PD使Li3N质子化,或(iii) PD发生结构变化。值得注意的是,在PD诱导的表面重建的驱动下,与地下嵌入相比,PD保持完整的配置表现出更高的稳定性。我们使用双层位移度量来量化这种重建,并发现位移大小与系统整体稳定性之间存在很强的相关性。进一步的电荷分析表明,Li3N稳定性的增强与更大的电子向氮的转移有关。最后,我们将PD的碱度、酸度和极性与氮化物的形成结果联系起来,表明PD的碱度促进了Li3N的完整构型。相反,较高的酸度和极性会导致PD的质子化和改变。这些见解指出了Kamlet-Taft ββ π - π空间中pd保持完整并促进稳定Li3N的区域,为未来设计更高效的limas系统提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lithium nitride (Li3N) formation in lithium-mediated electrochemical ammonia synthesis can Be enhanced with the right proton donor

Lithium nitride (Li3N) formation in lithium-mediated electrochemical ammonia synthesis can Be enhanced with the right proton donor
Lithium-mediated electrochemical ammonia synthesis (LiMEAS) hinges on the formation of lithium nitride (Li3N) from dissociated nitrogen at a lithium surface. Although proton donors (PDs) are known to influence nitrogen activation, their specific role in promoting Li3N formation is still being investigated. Herein, we employ density functional theory (DFT) to examine the effects of 14 PDs on the stability and energetics of Li3N formation. We show that in the absence of PD, Li3N formation is consistently outcompeted by subsurface N2 embedding and, in some cases, by surface N2 adsorption. However, the introduction of PD species yields three distinct outcomes: (i) the PD remains intact during Li3N formation, (ii) the PD protonates Li3N, or (iii) the PD undergoes structural change. Notably, configurations in which the PD remains intact exhibited greater stability compared to subsurface embedding, driven by PD-induced surface reconstruction. We quantify this reconstruction using a two-layer displacement metric and find a strong correlation between the magnitude of displacement and the system’s overall stability. Further charge analyses show that the enhanced Li3N stability correlates with a greater electron transfer to nitrogen. Finally, we link the basicity, acidity and polarity of PD with the results of the formation of nitride, demonstrating that the basicity of PD promotes intact configurations Li3N. In contrast, higher acidity and polarity lead to protonation and alteration of PD. These insights pinpoint a region in the Kamlet–Taft βπ space where PDs remain intact and foster stable Li3N, informing future strategies to design more efficient LiMEAS systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信