{"title":"氢燃料电池材料硫酸镝中质子电导率的累积增强效应","authors":"Jinxiang Yang, Jiasheng Wang, Bo Li, Yuqing Yan, Zhiwu Qiao, Haibo Liu, Yicong Zhu","doi":"10.1039/d5dt01177a","DOIUrl":null,"url":null,"abstract":"In this study, we successfully synthesized an anhydrous crystalline material based on the lanthanide metal dysprosium coordinated with the sulfate ligand. This material exhibits a unique cumulative enhancement effect: during constant-temperature cycling tests, its conductivity increased significantly with repeated testing cycles. Under anhydrous conditions at 243°C during the 10th cycle, a conductivity of 1.2×10⁻³ S·cm⁻¹ was achieved, representing a three-order-of-magnitude improvement over the initial value of 5.7×10⁻⁶ S·cm⁻¹ observed in the first cycle at 100°C. We sincerely hope this work will provide actionable insights for the design of proton-conductive materials and stimulate further research enthusiasm toward novel proton-conductive systems.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cumulative Enhancement Effect of Proton Conductivity in the Possible Hydrogen Fuel Cell Material Dysprosium Sulfate\",\"authors\":\"Jinxiang Yang, Jiasheng Wang, Bo Li, Yuqing Yan, Zhiwu Qiao, Haibo Liu, Yicong Zhu\",\"doi\":\"10.1039/d5dt01177a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we successfully synthesized an anhydrous crystalline material based on the lanthanide metal dysprosium coordinated with the sulfate ligand. This material exhibits a unique cumulative enhancement effect: during constant-temperature cycling tests, its conductivity increased significantly with repeated testing cycles. Under anhydrous conditions at 243°C during the 10th cycle, a conductivity of 1.2×10⁻³ S·cm⁻¹ was achieved, representing a three-order-of-magnitude improvement over the initial value of 5.7×10⁻⁶ S·cm⁻¹ observed in the first cycle at 100°C. We sincerely hope this work will provide actionable insights for the design of proton-conductive materials and stimulate further research enthusiasm toward novel proton-conductive systems.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5dt01177a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt01177a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Cumulative Enhancement Effect of Proton Conductivity in the Possible Hydrogen Fuel Cell Material Dysprosium Sulfate
In this study, we successfully synthesized an anhydrous crystalline material based on the lanthanide metal dysprosium coordinated with the sulfate ligand. This material exhibits a unique cumulative enhancement effect: during constant-temperature cycling tests, its conductivity increased significantly with repeated testing cycles. Under anhydrous conditions at 243°C during the 10th cycle, a conductivity of 1.2×10⁻³ S·cm⁻¹ was achieved, representing a three-order-of-magnitude improvement over the initial value of 5.7×10⁻⁶ S·cm⁻¹ observed in the first cycle at 100°C. We sincerely hope this work will provide actionable insights for the design of proton-conductive materials and stimulate further research enthusiasm toward novel proton-conductive systems.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.