层状钙钛矿PEA2PbBr4表面激子复合实现超快(600 ps)真空紫外反射闪烁

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Danwen Zhang, Lu Cheng, Xiaoyu Song, Xin Zhang, Lixin Zhang, Siqi Zhu, Mingxi Hu, Yang Liu, Xiaoping Ouyang, Prof. Wei Zheng
{"title":"层状钙钛矿PEA2PbBr4表面激子复合实现超快(600 ps)真空紫外反射闪烁","authors":"Danwen Zhang,&nbsp;Lu Cheng,&nbsp;Xiaoyu Song,&nbsp;Xin Zhang,&nbsp;Lixin Zhang,&nbsp;Siqi Zhu,&nbsp;Mingxi Hu,&nbsp;Yang Liu,&nbsp;Xiaoping Ouyang,&nbsp;Prof. Wei Zheng","doi":"10.1002/anie.202505665","DOIUrl":null,"url":null,"abstract":"<p>Vacuum ultraviolet (VUV) photodetection is pivotal for space exploration and radiation monitoring, yet its dynamic imaging capability is significantly hindered by the slow response of conventional scintillators. However, existing scintillators exhibit microsecond-to-nanosecond decay time, failing to meet sub-nanosecond ultrafast imaging demands. Here, we uncovered a surface exciton recombination mechanism in layered perovskite PEA<sub>2</sub>PbBr<sub>4</sub>, where lattice contraction induced exciton localization, achieving ultrafast decay time of 600 ps—over 100-fold faster than commercial scintillation. A reflective optical configuration was designed to suppress self-absorption, improving the light utilization efficiency. This work established a material paradigm for ultrafast dynamic imaging and opens avenues for advancing space science and high-energy physics detection.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 33","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast (600 ps) Vacuum-UV Reflective Scintillation Enabled by Surface Exciton Recombination in Layered Perovskite PEA2PbBr4\",\"authors\":\"Danwen Zhang,&nbsp;Lu Cheng,&nbsp;Xiaoyu Song,&nbsp;Xin Zhang,&nbsp;Lixin Zhang,&nbsp;Siqi Zhu,&nbsp;Mingxi Hu,&nbsp;Yang Liu,&nbsp;Xiaoping Ouyang,&nbsp;Prof. Wei Zheng\",\"doi\":\"10.1002/anie.202505665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vacuum ultraviolet (VUV) photodetection is pivotal for space exploration and radiation monitoring, yet its dynamic imaging capability is significantly hindered by the slow response of conventional scintillators. However, existing scintillators exhibit microsecond-to-nanosecond decay time, failing to meet sub-nanosecond ultrafast imaging demands. Here, we uncovered a surface exciton recombination mechanism in layered perovskite PEA<sub>2</sub>PbBr<sub>4</sub>, where lattice contraction induced exciton localization, achieving ultrafast decay time of 600 ps—over 100-fold faster than commercial scintillation. A reflective optical configuration was designed to suppress self-absorption, improving the light utilization efficiency. This work established a material paradigm for ultrafast dynamic imaging and opens avenues for advancing space science and high-energy physics detection.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 33\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505665\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505665","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

真空紫外(VUV)光探测是空间探测和辐射监测的关键,但其动态成像能力受到传统闪烁体响应缓慢的严重阻碍。然而,现有的闪烁体具有微秒到纳秒的衰减时间,无法满足亚纳秒级的超快成像需求。在这里,我们揭示了层状钙钛矿PEA2PbBr4中的表面激子重组机制,其中晶格收缩诱导激子定位,实现了600 ps的超快衰变时间,比商业闪烁快100倍以上。设计了一种抑制自吸收的反射光学结构,提高了光的利用效率。这项工作建立了超快动态成像的材料范式,为推进空间科学和高能物理探测开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrafast (600 ps) Vacuum-UV Reflective Scintillation Enabled by Surface Exciton Recombination in Layered Perovskite PEA2PbBr4

Ultrafast (600 ps) Vacuum-UV Reflective Scintillation Enabled by Surface Exciton Recombination in Layered Perovskite PEA2PbBr4

Vacuum ultraviolet (VUV) photodetection is pivotal for space exploration and radiation monitoring, yet its dynamic imaging capability is significantly hindered by the slow response of conventional scintillators. However, existing scintillators exhibit microsecond-to-nanosecond decay time, failing to meet sub-nanosecond ultrafast imaging demands. Here, we uncovered a surface exciton recombination mechanism in layered perovskite PEA2PbBr4, where lattice contraction induced exciton localization, achieving ultrafast decay time of 600 ps—over 100-fold faster than commercial scintillation. A reflective optical configuration was designed to suppress self-absorption, improving the light utilization efficiency. This work established a material paradigm for ultrafast dynamic imaging and opens avenues for advancing space science and high-energy physics detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信