{"title":"提高水对污泥厌氧消化的参与,实现高效产甲烷","authors":"Jiachang Cao, Ying Xu, Chen Zhang, Xiang Li, Rui Liu, Xueye Wang, Xiaohu Dai","doi":"10.1016/j.watres.2025.124047","DOIUrl":null,"url":null,"abstract":"Water is widely present in sewage sludge, in which it constitutes the largest proportion; however, its participation in the methanogenesis of sludge has been overlooked. Here we revealed the mechanisms enhancing the participation of water in methanogenesis of sludge. Through stable isotope tracing experiments, we observed that isoelectric point pretreatment significantly enhanced the participation of water in CO<sub>2</sub>-reduction methanogenesis. Experimental results show that solid-liquid non-covalent interactions and interfacial water ordering in sludge were significantly enhanced. The former outcome drove electron transfer, while the latter provided an efficient proton channel. Combined with hydrogen/deuterium kinetic isotope effect (KIE) tests, it demonstrated that the water-mediated proton-coupled electron transfer (PCET) in the sludge were enhanced, accompanied by possible quantum tunnelling effect (KIE >> 10). Variations in the concentrations of key enzymes indicated that enhancing water-mediated PCET promoted both intracellular and extracellular electron–proton flow and accelerated the efficiency of mutual conversion between NADH and NAD<sup>+</sup>, strongly driving ATP synthesis. Further genome-centric metagenomic analysis and reaction thermodynamic calculations revealed that enhancing water-mediated PCET triggered enrichment of CO<sub>2</sub>-reduction methanogenic consortia and effectively bypassed the limitation of H<sub>2</sub> partial pressure, providing a thermodynamic advantage to promote collaborative methanogenic metabolisms. These findings provide a theoretical basis for regulating the methanogenesis of perishable organic solid waste by water.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"603 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the participation of water in the anaerobic digestion of sewage sludge for highly efficient methanogenesis\",\"authors\":\"Jiachang Cao, Ying Xu, Chen Zhang, Xiang Li, Rui Liu, Xueye Wang, Xiaohu Dai\",\"doi\":\"10.1016/j.watres.2025.124047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water is widely present in sewage sludge, in which it constitutes the largest proportion; however, its participation in the methanogenesis of sludge has been overlooked. Here we revealed the mechanisms enhancing the participation of water in methanogenesis of sludge. Through stable isotope tracing experiments, we observed that isoelectric point pretreatment significantly enhanced the participation of water in CO<sub>2</sub>-reduction methanogenesis. Experimental results show that solid-liquid non-covalent interactions and interfacial water ordering in sludge were significantly enhanced. The former outcome drove electron transfer, while the latter provided an efficient proton channel. Combined with hydrogen/deuterium kinetic isotope effect (KIE) tests, it demonstrated that the water-mediated proton-coupled electron transfer (PCET) in the sludge were enhanced, accompanied by possible quantum tunnelling effect (KIE >> 10). Variations in the concentrations of key enzymes indicated that enhancing water-mediated PCET promoted both intracellular and extracellular electron–proton flow and accelerated the efficiency of mutual conversion between NADH and NAD<sup>+</sup>, strongly driving ATP synthesis. Further genome-centric metagenomic analysis and reaction thermodynamic calculations revealed that enhancing water-mediated PCET triggered enrichment of CO<sub>2</sub>-reduction methanogenic consortia and effectively bypassed the limitation of H<sub>2</sub> partial pressure, providing a thermodynamic advantage to promote collaborative methanogenic metabolisms. These findings provide a theoretical basis for regulating the methanogenesis of perishable organic solid waste by water.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"603 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2025.124047\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.124047","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Enhancing the participation of water in the anaerobic digestion of sewage sludge for highly efficient methanogenesis
Water is widely present in sewage sludge, in which it constitutes the largest proportion; however, its participation in the methanogenesis of sludge has been overlooked. Here we revealed the mechanisms enhancing the participation of water in methanogenesis of sludge. Through stable isotope tracing experiments, we observed that isoelectric point pretreatment significantly enhanced the participation of water in CO2-reduction methanogenesis. Experimental results show that solid-liquid non-covalent interactions and interfacial water ordering in sludge were significantly enhanced. The former outcome drove electron transfer, while the latter provided an efficient proton channel. Combined with hydrogen/deuterium kinetic isotope effect (KIE) tests, it demonstrated that the water-mediated proton-coupled electron transfer (PCET) in the sludge were enhanced, accompanied by possible quantum tunnelling effect (KIE >> 10). Variations in the concentrations of key enzymes indicated that enhancing water-mediated PCET promoted both intracellular and extracellular electron–proton flow and accelerated the efficiency of mutual conversion between NADH and NAD+, strongly driving ATP synthesis. Further genome-centric metagenomic analysis and reaction thermodynamic calculations revealed that enhancing water-mediated PCET triggered enrichment of CO2-reduction methanogenic consortia and effectively bypassed the limitation of H2 partial pressure, providing a thermodynamic advantage to promote collaborative methanogenic metabolisms. These findings provide a theoretical basis for regulating the methanogenesis of perishable organic solid waste by water.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.