Stefan Dittmar, Steffen Weyrauch, Thorsten Reemtsma, Paul Eisentraut, Korinna Altmann, Aki S. Ruhl, Martin Jekel
{"title":"轮胎和道路磨损颗粒的沉降速度:分析公路模拟器和公路隧道样品的精细分级密度分数","authors":"Stefan Dittmar, Steffen Weyrauch, Thorsten Reemtsma, Paul Eisentraut, Korinna Altmann, Aki S. Ruhl, Martin Jekel","doi":"10.1021/acs.est.5c04165","DOIUrl":null,"url":null,"abstract":"The terminal settling velocity is considered the most critical parameter determining the transport of tire and road wear particles (TRWP) in aquatic environments. Nonetheless, no respective empirical data has been reported so far. In this study, particle samples from a road simulator and a highway tunnel were investigated with a validated imaging method. Different density and size fractions of both samples were measured separately, acquiring sizes and settling velocities of more than 30,000 individual particles. In addition, tire marker polymers were analyzed for each fraction via thermal extraction desorption-gas chromatography/mass spectrometry. Finally, the acquired particle data was combined according to the fractions’ estimated tire contents in order to deduce detailed probability distributions of particle size and settling velocity for the actual TRWP from both samples. Weighted by TRWP-incorporated tire mass, median diameters of 54 and 44 μm as well as median settling velocities of 0.65 and 0.22 mm/s were found for TRWP from the road simulator and highway tunnel, respectively. This study thus provides the first ever empirical data on TRWP settling velocities in water, which can be highly valuable input for modeling the environmental transport of TRWP and for dimensioning TRWP retention systems.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"44 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Settling Velocities of Tire and Road Wear Particles: Analyzing Finely Graded Density Fractions of Samples from a Road Simulator and a Highway Tunnel\",\"authors\":\"Stefan Dittmar, Steffen Weyrauch, Thorsten Reemtsma, Paul Eisentraut, Korinna Altmann, Aki S. Ruhl, Martin Jekel\",\"doi\":\"10.1021/acs.est.5c04165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The terminal settling velocity is considered the most critical parameter determining the transport of tire and road wear particles (TRWP) in aquatic environments. Nonetheless, no respective empirical data has been reported so far. In this study, particle samples from a road simulator and a highway tunnel were investigated with a validated imaging method. Different density and size fractions of both samples were measured separately, acquiring sizes and settling velocities of more than 30,000 individual particles. In addition, tire marker polymers were analyzed for each fraction via thermal extraction desorption-gas chromatography/mass spectrometry. Finally, the acquired particle data was combined according to the fractions’ estimated tire contents in order to deduce detailed probability distributions of particle size and settling velocity for the actual TRWP from both samples. Weighted by TRWP-incorporated tire mass, median diameters of 54 and 44 μm as well as median settling velocities of 0.65 and 0.22 mm/s were found for TRWP from the road simulator and highway tunnel, respectively. This study thus provides the first ever empirical data on TRWP settling velocities in water, which can be highly valuable input for modeling the environmental transport of TRWP and for dimensioning TRWP retention systems.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.5c04165\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c04165","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Settling Velocities of Tire and Road Wear Particles: Analyzing Finely Graded Density Fractions of Samples from a Road Simulator and a Highway Tunnel
The terminal settling velocity is considered the most critical parameter determining the transport of tire and road wear particles (TRWP) in aquatic environments. Nonetheless, no respective empirical data has been reported so far. In this study, particle samples from a road simulator and a highway tunnel were investigated with a validated imaging method. Different density and size fractions of both samples were measured separately, acquiring sizes and settling velocities of more than 30,000 individual particles. In addition, tire marker polymers were analyzed for each fraction via thermal extraction desorption-gas chromatography/mass spectrometry. Finally, the acquired particle data was combined according to the fractions’ estimated tire contents in order to deduce detailed probability distributions of particle size and settling velocity for the actual TRWP from both samples. Weighted by TRWP-incorporated tire mass, median diameters of 54 and 44 μm as well as median settling velocities of 0.65 and 0.22 mm/s were found for TRWP from the road simulator and highway tunnel, respectively. This study thus provides the first ever empirical data on TRWP settling velocities in water, which can be highly valuable input for modeling the environmental transport of TRWP and for dimensioning TRWP retention systems.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.