Kohki Uno, Keiichi Maeda, Takashi Nagao, Giorgos Leloudas, Panos Charalampopoulos, Seppo Mattila, Kentaro Aoki, Kenta Taguchi, Miho Kawabata, Javier Moldon, Miguel Pérez-Torres, Miika Pursiainen and Thomas Reynolds
{"title":"核瞬态AT2023clx的光谱偏振测定:揭示瞬态流出和核尘埃区之间的几何排列","authors":"Kohki Uno, Keiichi Maeda, Takashi Nagao, Giorgos Leloudas, Panos Charalampopoulos, Seppo Mattila, Kentaro Aoki, Kenta Taguchi, Miho Kawabata, Javier Moldon, Miguel Pérez-Torres, Miika Pursiainen and Thomas Reynolds","doi":"10.3847/2041-8213/add71b","DOIUrl":null,"url":null,"abstract":"AT2023clx, which occurred in NGC 3799 with a low-ionization nuclear emission-line region (LINER), is one of the most nearby nuclear transients classified as a tidal disruption event (TDE). We present three-epoch spectropolarimetric follow-up observations of AT2023clx. We detected two polarization components; one is a constant polarization of ∼1% originating from an aspherical outflow associated with the transient, while the other is a blue-excess polarization toward ∼2% originating from a nuclear dusty environment via light echoes. The polarization angle flipped by 90° between the two epochs, indicating that the outflow direction was perpendicular to the dust plane. Furthermore, the polarized flux might suggest that the nuclear dust favors relatively large grains, potentially offering constraints on its physical properties. Such polarization features—the blue excess and the 90° flip—have never been observed in previous TDE polarization samples, highlighting unique mechanisms behind AT2023clx. We propose possible scenarios: the disruption of a star formed within or captured by a nuclear dusty cloud. Given the LINER nature of NGC3799, the dusty region may possibly be linked to a torus or disk associated with a weak active galactic nucleus (AGN). Furthermore, as a more speculative scenario, the event might have been triggered by AGN-like activity, potentially linked to changing-look AGNs or ambiguous nuclear transients. These findings highlight the power of time-series spectropolarimetry of TDEs, not only in probing the origins of nuclear transients but also in investigating the physical properties of nuclear dust.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectropolarimetry of a Nuclear Transient AT2023clx: Revealing the Geometrical Alignment between the Transient Outflow and the Nuclear Dusty Region\",\"authors\":\"Kohki Uno, Keiichi Maeda, Takashi Nagao, Giorgos Leloudas, Panos Charalampopoulos, Seppo Mattila, Kentaro Aoki, Kenta Taguchi, Miho Kawabata, Javier Moldon, Miguel Pérez-Torres, Miika Pursiainen and Thomas Reynolds\",\"doi\":\"10.3847/2041-8213/add71b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AT2023clx, which occurred in NGC 3799 with a low-ionization nuclear emission-line region (LINER), is one of the most nearby nuclear transients classified as a tidal disruption event (TDE). We present three-epoch spectropolarimetric follow-up observations of AT2023clx. We detected two polarization components; one is a constant polarization of ∼1% originating from an aspherical outflow associated with the transient, while the other is a blue-excess polarization toward ∼2% originating from a nuclear dusty environment via light echoes. The polarization angle flipped by 90° between the two epochs, indicating that the outflow direction was perpendicular to the dust plane. Furthermore, the polarized flux might suggest that the nuclear dust favors relatively large grains, potentially offering constraints on its physical properties. Such polarization features—the blue excess and the 90° flip—have never been observed in previous TDE polarization samples, highlighting unique mechanisms behind AT2023clx. We propose possible scenarios: the disruption of a star formed within or captured by a nuclear dusty cloud. Given the LINER nature of NGC3799, the dusty region may possibly be linked to a torus or disk associated with a weak active galactic nucleus (AGN). Furthermore, as a more speculative scenario, the event might have been triggered by AGN-like activity, potentially linked to changing-look AGNs or ambiguous nuclear transients. These findings highlight the power of time-series spectropolarimetry of TDEs, not only in probing the origins of nuclear transients but also in investigating the physical properties of nuclear dust.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/add71b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/add71b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectropolarimetry of a Nuclear Transient AT2023clx: Revealing the Geometrical Alignment between the Transient Outflow and the Nuclear Dusty Region
AT2023clx, which occurred in NGC 3799 with a low-ionization nuclear emission-line region (LINER), is one of the most nearby nuclear transients classified as a tidal disruption event (TDE). We present three-epoch spectropolarimetric follow-up observations of AT2023clx. We detected two polarization components; one is a constant polarization of ∼1% originating from an aspherical outflow associated with the transient, while the other is a blue-excess polarization toward ∼2% originating from a nuclear dusty environment via light echoes. The polarization angle flipped by 90° between the two epochs, indicating that the outflow direction was perpendicular to the dust plane. Furthermore, the polarized flux might suggest that the nuclear dust favors relatively large grains, potentially offering constraints on its physical properties. Such polarization features—the blue excess and the 90° flip—have never been observed in previous TDE polarization samples, highlighting unique mechanisms behind AT2023clx. We propose possible scenarios: the disruption of a star formed within or captured by a nuclear dusty cloud. Given the LINER nature of NGC3799, the dusty region may possibly be linked to a torus or disk associated with a weak active galactic nucleus (AGN). Furthermore, as a more speculative scenario, the event might have been triggered by AGN-like activity, potentially linked to changing-look AGNs or ambiguous nuclear transients. These findings highlight the power of time-series spectropolarimetry of TDEs, not only in probing the origins of nuclear transients but also in investigating the physical properties of nuclear dust.