常压等离子喷涂制备可逆金属支撑固体氧化物电池及其电化学性能

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Chun-Liang Chang , Chun-Huang Tsai , Chang-Shiang Yang , Ching-Yun Yang , Han-Xiang He , Szu-Han Wu , Yi-jing Wu
{"title":"常压等离子喷涂制备可逆金属支撑固体氧化物电池及其电化学性能","authors":"Chun-Liang Chang ,&nbsp;Chun-Huang Tsai ,&nbsp;Chang-Shiang Yang ,&nbsp;Ching-Yun Yang ,&nbsp;Han-Xiang He ,&nbsp;Szu-Han Wu ,&nbsp;Yi-jing Wu","doi":"10.1016/j.electacta.2025.146727","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the fabrication and electrochemical performance of reversible metal-supported solid oxide cells (RSOCs) developed using atmospheric plasma spraying (APS) at the National Atomic Research Institute (NARI). The RSOC architecture features a tri-layer composite electrolyte composed of Sm-doped ceria (SDC) and Sr- and Mg-doped LaGaO₃ (LSGM), which enhances ionic conductivity and reduces polarization resistance. The 10 × 10 cm² cells deliver peak power densities of 660, 798, and 859 mW cm⁻² at 650, 700, and 750 °C, respectively, under 0.7 V fuel cell operation. Long-term stability testing at 700 °C over 1200 h reveals a degradation rate of approximately 1 % k⁻¹ h⁻¹, demonstrating excellent durability. In electrolysis mode, each RSOC generates hydrogen at a rate of 0.6 L min⁻¹ at 700 °C under 1.17 V and 80 A, achieving an efficiency of 88.03 % based on the lower heating value (LHV). The composite SDC/LSGM/SDC electrolyte exhibits an ionic conductivity of 0.0435 S cm⁻¹ at 750 °C, which outperforms that of LDC/LSGM (0.0308 S cm⁻¹), and displays a lower activation energy of 0.792 eV. A 100-hour preliminary electrolysis test indicates negligible degradation, confirming the structural integrity and dual-mode functionality of the RSOC. These results highlight APS-fabricated RSOCs as a promising platform for efficient and durable energy conversion and storage at intermediate temperatures.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"536 ","pages":"Article 146727"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and electrochemical performance of reversible metal-supported solid oxide cells via atmospheric plasma spraying\",\"authors\":\"Chun-Liang Chang ,&nbsp;Chun-Huang Tsai ,&nbsp;Chang-Shiang Yang ,&nbsp;Ching-Yun Yang ,&nbsp;Han-Xiang He ,&nbsp;Szu-Han Wu ,&nbsp;Yi-jing Wu\",\"doi\":\"10.1016/j.electacta.2025.146727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the fabrication and electrochemical performance of reversible metal-supported solid oxide cells (RSOCs) developed using atmospheric plasma spraying (APS) at the National Atomic Research Institute (NARI). The RSOC architecture features a tri-layer composite electrolyte composed of Sm-doped ceria (SDC) and Sr- and Mg-doped LaGaO₃ (LSGM), which enhances ionic conductivity and reduces polarization resistance. The 10 × 10 cm² cells deliver peak power densities of 660, 798, and 859 mW cm⁻² at 650, 700, and 750 °C, respectively, under 0.7 V fuel cell operation. Long-term stability testing at 700 °C over 1200 h reveals a degradation rate of approximately 1 % k⁻¹ h⁻¹, demonstrating excellent durability. In electrolysis mode, each RSOC generates hydrogen at a rate of 0.6 L min⁻¹ at 700 °C under 1.17 V and 80 A, achieving an efficiency of 88.03 % based on the lower heating value (LHV). The composite SDC/LSGM/SDC electrolyte exhibits an ionic conductivity of 0.0435 S cm⁻¹ at 750 °C, which outperforms that of LDC/LSGM (0.0308 S cm⁻¹), and displays a lower activation energy of 0.792 eV. A 100-hour preliminary electrolysis test indicates negligible degradation, confirming the structural integrity and dual-mode functionality of the RSOC. These results highlight APS-fabricated RSOCs as a promising platform for efficient and durable energy conversion and storage at intermediate temperatures.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"536 \",\"pages\":\"Article 146727\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625010886\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625010886","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了美国国家原子研究所(NARI)利用大气等离子喷涂(APS)技术制备的可逆金属支撑固体氧化物电池(rsoc)的制备及其电化学性能。RSOC结构的特点是由sm掺杂的ceria (SDC)和Sr和mg掺杂的LaGaO₃(LSGM)组成的三层复合电解质,可以提高离子电导率并降低极化电阻。10 × 10 cm²电池在0.7 V燃料电池工作下,分别在650、700和750 °C下提供660、798和859 mW cm - 2的峰值功率密度。在700 °C下1200小时的长期稳定性测试显示,它的降解率约为1% (k⁻¹h⁻¹),证明了它的耐久性。在电解模式下,每个RSOC在700 °C、1.17 V、80 a条件下产生氢气的速率为0.6 L min⁻¹,根据较低热值(LHV)计算,效率为88.03%。SDC/LSGM/SDC复合电解质在750 °C时的离子电导率为0.0435 S cm⁻¹,优于LDC/LSGM (0.0308 S cm⁻¹),活化能为0.792 eV。100小时的初步电解测试表明,降解可以忽略不计,证实了RSOC的结构完整性和双模功能。这些结果突出表明,aps制造的rsoc是一种在中温条件下高效、持久的能量转换和存储的有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication and electrochemical performance of reversible metal-supported solid oxide cells via atmospheric plasma spraying
This study investigates the fabrication and electrochemical performance of reversible metal-supported solid oxide cells (RSOCs) developed using atmospheric plasma spraying (APS) at the National Atomic Research Institute (NARI). The RSOC architecture features a tri-layer composite electrolyte composed of Sm-doped ceria (SDC) and Sr- and Mg-doped LaGaO₃ (LSGM), which enhances ionic conductivity and reduces polarization resistance. The 10 × 10 cm² cells deliver peak power densities of 660, 798, and 859 mW cm⁻² at 650, 700, and 750 °C, respectively, under 0.7 V fuel cell operation. Long-term stability testing at 700 °C over 1200 h reveals a degradation rate of approximately 1 % k⁻¹ h⁻¹, demonstrating excellent durability. In electrolysis mode, each RSOC generates hydrogen at a rate of 0.6 L min⁻¹ at 700 °C under 1.17 V and 80 A, achieving an efficiency of 88.03 % based on the lower heating value (LHV). The composite SDC/LSGM/SDC electrolyte exhibits an ionic conductivity of 0.0435 S cm⁻¹ at 750 °C, which outperforms that of LDC/LSGM (0.0308 S cm⁻¹), and displays a lower activation energy of 0.792 eV. A 100-hour preliminary electrolysis test indicates negligible degradation, confirming the structural integrity and dual-mode functionality of the RSOC. These results highlight APS-fabricated RSOCs as a promising platform for efficient and durable energy conversion and storage at intermediate temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信