{"title":"TDDFT中g矩阵计算的状态-相互作用方法:基态激发态耦合和超一阶自旋轨道效应。","authors":"Antonio Cebreiro-Gallardo,David Casanova","doi":"10.1021/acs.jctc.5c00514","DOIUrl":null,"url":null,"abstract":"We introduce a state-interaction approach for computing g-matrices within time-dependent density functional theory (TDDFT) and the Tamm-Dancoff approximation (TDA), applied here for the first time. This method provides a detailed understanding of g-shifts by explicitly accounting for spin-orbit couplings (SOC) and excitation energies, enabling the analysis of different SOC orders and their contributions. To evaluate its accuracy and reliability, we compare state-interaction TDDFT and TDA with the widely used one-component coupled-perturbed Kohn-Sham approach. Applications to a diverse set of systems, including light and heavy atom molecules as well as transition-metal complexes, demonstrate that both methods yield comparable results in the absence of heavy elements, while the state-interaction approach offers improved insights into SOC effects and their impact on g-shifts.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"35 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-Interaction Approach for g-Matrix Calculations in TDDFT: Ground-Excited State Couplings and beyond First-Order Spin-Orbit Effects.\",\"authors\":\"Antonio Cebreiro-Gallardo,David Casanova\",\"doi\":\"10.1021/acs.jctc.5c00514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a state-interaction approach for computing g-matrices within time-dependent density functional theory (TDDFT) and the Tamm-Dancoff approximation (TDA), applied here for the first time. This method provides a detailed understanding of g-shifts by explicitly accounting for spin-orbit couplings (SOC) and excitation energies, enabling the analysis of different SOC orders and their contributions. To evaluate its accuracy and reliability, we compare state-interaction TDDFT and TDA with the widely used one-component coupled-perturbed Kohn-Sham approach. Applications to a diverse set of systems, including light and heavy atom molecules as well as transition-metal complexes, demonstrate that both methods yield comparable results in the absence of heavy elements, while the state-interaction approach offers improved insights into SOC effects and their impact on g-shifts.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00514\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00514","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
State-Interaction Approach for g-Matrix Calculations in TDDFT: Ground-Excited State Couplings and beyond First-Order Spin-Orbit Effects.
We introduce a state-interaction approach for computing g-matrices within time-dependent density functional theory (TDDFT) and the Tamm-Dancoff approximation (TDA), applied here for the first time. This method provides a detailed understanding of g-shifts by explicitly accounting for spin-orbit couplings (SOC) and excitation energies, enabling the analysis of different SOC orders and their contributions. To evaluate its accuracy and reliability, we compare state-interaction TDDFT and TDA with the widely used one-component coupled-perturbed Kohn-Sham approach. Applications to a diverse set of systems, including light and heavy atom molecules as well as transition-metal complexes, demonstrate that both methods yield comparable results in the absence of heavy elements, while the state-interaction approach offers improved insights into SOC effects and their impact on g-shifts.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.