通过MOF封装实现CsPbBr3量子点的长期水稳定性和强激子-光子耦合

IF 6.6 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chiao-Chih Lin, Shih-Cheng Wan, Cheng-Hui Shen, Zheng-Lin Liao, Yen Liu, Zong Yu Wu, Sheng-Chan Wu, Chia-Kai Lin, Chung-Wei Kung, Hsu-Cheng Hsu, Yu-Hsun Chou
{"title":"通过MOF封装实现CsPbBr3量子点的长期水稳定性和强激子-光子耦合","authors":"Chiao-Chih Lin, Shih-Cheng Wan, Cheng-Hui Shen, Zheng-Lin Liao, Yen Liu, Zong Yu Wu, Sheng-Chan Wu, Chia-Kai Lin, Chung-Wei Kung, Hsu-Cheng Hsu, Yu-Hsun Chou","doi":"10.1515/nanoph-2025-0059","DOIUrl":null,"url":null,"abstract":"CsPbBr<jats:sub>3</jats:sub> perovskite quantum dots (QDs) are renowned for their exceptional optical properties, including high quantum efficiency, strong exciton binding energy, and tunable emission wavelengths. However, their practical application is hindered by their inherent susceptibility to environmental degradation. In this study, we introduce a CsPbBr<jats:sub>3</jats:sub>@UiO-66 composite material, where CsPbBr<jats:sub>3</jats:sub> QDs self-assemble within the microporous framework of UiO-66, a robust metal-organic framework (MOF). This encapsulation strategy significantly enhances the environmental stability of CsPbBr<jats:sub>3</jats:sub> QDs, maintaining luminescence for over 30 months under ambient conditions and several hours underwater. Temperature-dependent and time resolved photoluminescence (TRPL) measurements further revealed the exciton–phonon interaction within the CsPbBr<jats:sub>3</jats:sub>@UiO-66 material. We distributed CsPbBr<jats:sub>3</jats:sub>@UiO-66 into a hybrid microcavity (MC) and observed strong exciton–polariton coupling, showcasing the remarkable light–matter interaction capabilities of the composite. These findings highlight the potential of CsPbBr<jats:sub>3</jats:sub>@UiO-66 as a robust platform for advanced polaritonic applications, paving the way for next-generation optoelectronic devices and quantum technologies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"40 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving long-term water stability and strong exciton–photon coupling in CsPbBr3 quantum dots via MOF encapsulation\",\"authors\":\"Chiao-Chih Lin, Shih-Cheng Wan, Cheng-Hui Shen, Zheng-Lin Liao, Yen Liu, Zong Yu Wu, Sheng-Chan Wu, Chia-Kai Lin, Chung-Wei Kung, Hsu-Cheng Hsu, Yu-Hsun Chou\",\"doi\":\"10.1515/nanoph-2025-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CsPbBr<jats:sub>3</jats:sub> perovskite quantum dots (QDs) are renowned for their exceptional optical properties, including high quantum efficiency, strong exciton binding energy, and tunable emission wavelengths. However, their practical application is hindered by their inherent susceptibility to environmental degradation. In this study, we introduce a CsPbBr<jats:sub>3</jats:sub>@UiO-66 composite material, where CsPbBr<jats:sub>3</jats:sub> QDs self-assemble within the microporous framework of UiO-66, a robust metal-organic framework (MOF). This encapsulation strategy significantly enhances the environmental stability of CsPbBr<jats:sub>3</jats:sub> QDs, maintaining luminescence for over 30 months under ambient conditions and several hours underwater. Temperature-dependent and time resolved photoluminescence (TRPL) measurements further revealed the exciton–phonon interaction within the CsPbBr<jats:sub>3</jats:sub>@UiO-66 material. We distributed CsPbBr<jats:sub>3</jats:sub>@UiO-66 into a hybrid microcavity (MC) and observed strong exciton–polariton coupling, showcasing the remarkable light–matter interaction capabilities of the composite. These findings highlight the potential of CsPbBr<jats:sub>3</jats:sub>@UiO-66 as a robust platform for advanced polaritonic applications, paving the way for next-generation optoelectronic devices and quantum technologies.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0059\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0059","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

CsPbBr3钙钛矿量子点(QDs)以其优异的光学特性而闻名,包括高量子效率、强激子结合能和可调谐的发射波长。然而,它们对环境退化的固有敏感性阻碍了它们的实际应用。在这项研究中,我们引入了一种CsPbBr3@UiO-66复合材料,其中CsPbBr3量子点在UiO-66的微孔框架内自组装,UiO-66是一种坚固的金属有机框架(MOF)。这种封装策略显著提高了CsPbBr3量子点的环境稳定性,在环境条件下和水下可保持发光超过30个月。温度依赖性和时间分辨光致发光(TRPL)测量进一步揭示了CsPbBr3@UiO-66材料内部的激子-声子相互作用。我们将CsPbBr3@UiO-66分布到混合微腔(MC)中,观察到强激子-极化子耦合,展示了复合材料显著的光-物质相互作用能力。这些发现突出了CsPbBr3@UiO-66作为先进极化应用的强大平台的潜力,为下一代光电器件和量子技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving long-term water stability and strong exciton–photon coupling in CsPbBr3 quantum dots via MOF encapsulation
CsPbBr3 perovskite quantum dots (QDs) are renowned for their exceptional optical properties, including high quantum efficiency, strong exciton binding energy, and tunable emission wavelengths. However, their practical application is hindered by their inherent susceptibility to environmental degradation. In this study, we introduce a CsPbBr3@UiO-66 composite material, where CsPbBr3 QDs self-assemble within the microporous framework of UiO-66, a robust metal-organic framework (MOF). This encapsulation strategy significantly enhances the environmental stability of CsPbBr3 QDs, maintaining luminescence for over 30 months under ambient conditions and several hours underwater. Temperature-dependent and time resolved photoluminescence (TRPL) measurements further revealed the exciton–phonon interaction within the CsPbBr3@UiO-66 material. We distributed CsPbBr3@UiO-66 into a hybrid microcavity (MC) and observed strong exciton–polariton coupling, showcasing the remarkable light–matter interaction capabilities of the composite. These findings highlight the potential of CsPbBr3@UiO-66 as a robust platform for advanced polaritonic applications, paving the way for next-generation optoelectronic devices and quantum technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信