用扫描电化学显微镜研究多晶金表面上烷硫醇自组装单层的纳米级还原解吸。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hope Kumakli,  and , Ryan J. White*, 
{"title":"用扫描电化学显微镜研究多晶金表面上烷硫醇自组装单层的纳米级还原解吸。","authors":"Hope Kumakli,&nbsp; and ,&nbsp;Ryan J. White*,&nbsp;","doi":"10.1021/acs.langmuir.4c03996","DOIUrl":null,"url":null,"abstract":"<p >Controlled deposition and desorption of self-assembled thiol monolayers on gold surfaces enable precise surface engineering, leading to tailored surface functionalities crucial for a wide range of applications in surface science, nanotechnology, and biomedicine. This work describes the nanoscale electrochemical desorption of self-assembled monolayers (SAMs) of alkanethiols on gold surfaces. Employing scanning electrochemical cell microscopy, we investigate the substrate- and potential-dependent process of SAM desorption with a focus on the impact of alkanethiol chain length and underlying substrate crystallinity. Our study reveals significant insights into the desorption behavior of SAMs at the nanoscale, elucidating phenomena masked in bulk reductive desorption processes. Through controlled experiments on both annealed and unannealed gold foil electrodes, we explore the role of crystal facet composition and chain length in SAM desorption. The results highlight the influence of substrate properties on the desorption curves and the quantity of desorbed molecules. This work not only advances our understanding of SAM desorption mechanisms but also offers valuable implications for various scientific and technological endeavors, including surface science, nanotechnology, and sensor development.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 25","pages":"15752–15763"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Reductive Desorption of Alkanethiol Self-Assembled Monolayers on Polycrystalline Gold Surfaces Using Scanning Electrochemical Microscopy\",\"authors\":\"Hope Kumakli,&nbsp; and ,&nbsp;Ryan J. White*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c03996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Controlled deposition and desorption of self-assembled thiol monolayers on gold surfaces enable precise surface engineering, leading to tailored surface functionalities crucial for a wide range of applications in surface science, nanotechnology, and biomedicine. This work describes the nanoscale electrochemical desorption of self-assembled monolayers (SAMs) of alkanethiols on gold surfaces. Employing scanning electrochemical cell microscopy, we investigate the substrate- and potential-dependent process of SAM desorption with a focus on the impact of alkanethiol chain length and underlying substrate crystallinity. Our study reveals significant insights into the desorption behavior of SAMs at the nanoscale, elucidating phenomena masked in bulk reductive desorption processes. Through controlled experiments on both annealed and unannealed gold foil electrodes, we explore the role of crystal facet composition and chain length in SAM desorption. The results highlight the influence of substrate properties on the desorption curves and the quantity of desorbed molecules. This work not only advances our understanding of SAM desorption mechanisms but also offers valuable implications for various scientific and technological endeavors, including surface science, nanotechnology, and sensor development.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 25\",\"pages\":\"15752–15763\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03996\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03996","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在金表面上控制自组装硫醇单层的沉积和解吸,可以实现精确的表面工程,从而产生定制的表面功能,这对于表面科学、纳米技术和生物医学的广泛应用至关重要。这项工作描述了在金表面上自组装的烷硫醇单层(sam)的纳米级电化学解吸。利用扫描电化学电池显微镜,我们研究了SAM脱附的底物和电位依赖过程,重点研究了烷烃硫醇链长度和底物结晶度的影响。我们的研究揭示了sam在纳米尺度上的脱附行为,阐明了在体还原脱附过程中被掩盖的现象。通过对退火和未退火金箔电极的对照实验,我们探讨了晶面组成和链长在SAM脱附中的作用。结果表明,底物性质对解吸曲线和解吸分子数量的影响。这项工作不仅促进了我们对SAM解吸机制的理解,而且为各种科学和技术的努力提供了有价值的启示,包括表面科学、纳米技术和传感器的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoscale Reductive Desorption of Alkanethiol Self-Assembled Monolayers on Polycrystalline Gold Surfaces Using Scanning Electrochemical Microscopy

Nanoscale Reductive Desorption of Alkanethiol Self-Assembled Monolayers on Polycrystalline Gold Surfaces Using Scanning Electrochemical Microscopy

Controlled deposition and desorption of self-assembled thiol monolayers on gold surfaces enable precise surface engineering, leading to tailored surface functionalities crucial for a wide range of applications in surface science, nanotechnology, and biomedicine. This work describes the nanoscale electrochemical desorption of self-assembled monolayers (SAMs) of alkanethiols on gold surfaces. Employing scanning electrochemical cell microscopy, we investigate the substrate- and potential-dependent process of SAM desorption with a focus on the impact of alkanethiol chain length and underlying substrate crystallinity. Our study reveals significant insights into the desorption behavior of SAMs at the nanoscale, elucidating phenomena masked in bulk reductive desorption processes. Through controlled experiments on both annealed and unannealed gold foil electrodes, we explore the role of crystal facet composition and chain length in SAM desorption. The results highlight the influence of substrate properties on the desorption curves and the quantity of desorbed molecules. This work not only advances our understanding of SAM desorption mechanisms but also offers valuable implications for various scientific and technological endeavors, including surface science, nanotechnology, and sensor development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信