{"title":"口腔癌患者士气低落综合征的风险预测","authors":"Liyan Mao, Xixi Yang, Xiaoqin Bi, Min Liu, Chongyang Zhao, Zuozhen Wen","doi":"10.7518/hxkq.2025.2024340","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to construct a risk prediction model for the occurrence of the demora-lization syndrome in patients with oral cancer and provide a scientific basis for the prevention of this syndrome in patients with oral cancer and the development of personalized care programs.</p><p><strong>Methods: </strong>A total of 486 patients with oral cancer in West China Hospital of Stomatology of Sichuan University and Sun Yat-sen Memorial Hospital of Sun Yat-sen University from 2024 March to July were selected by convenience sampling. We integrated clinical data and evidence from previous studies to identify the key variables affecting the demoralization syndrome in patients with oral cancer. The 486 patients were divided into a training set and a validation set in an 8∶2 ratio. A clinical risk prediction model was established based on the individual data of 365 patients in the development cohort. Through least absolute shrinkage and selection operator (LASSO) regression, a moderate to severe risk prediction model of demoralization syndrome in oral cancer was constructed, and a clinical machine-learning nomogram was constructed. Bootstrap resampling was used for internal validation. The data of 121 patients in the validation cohort were externally validated.</p><p><strong>Results: </strong>The incidence of the demoralization syndrome in patients with oral cancer was 405 cases (83.3%), of which 279 cases (57.4%) were mild, 176 cases (36.2%) were moderate, and 31 cases (6.4%) were severe. The core model, including patient education level, disease understanding, and MDASI-HN score, was used to predict the risk of outcome. Internal validation of the model yielded C statistic of 0.783 6 (95% CI: 0.78-0.87), beta of 0.843 4, and calibration intercept of -0.040 6. Through external validation, the validation set C statistic was 0.80 (95%CI: 0.71-0.87), beta was 0.80, and calibration intercept was -0.08.</p><p><strong>Conclusions: </strong>Our risk prediction mo-del of the demoralization syndrome in patients with oral cancer performed robustly in validation cohorts of different nur-sing environments. The model has good correction and good discrimination and can be used as an evaluation and prediction item at admission.</p>","PeriodicalId":94028,"journal":{"name":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","volume":"43 3","pages":"395-405"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211499/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Risk prediction of demoralization syndrome in patients with oral cancer].\",\"authors\":\"Liyan Mao, Xixi Yang, Xiaoqin Bi, Min Liu, Chongyang Zhao, Zuozhen Wen\",\"doi\":\"10.7518/hxkq.2025.2024340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to construct a risk prediction model for the occurrence of the demora-lization syndrome in patients with oral cancer and provide a scientific basis for the prevention of this syndrome in patients with oral cancer and the development of personalized care programs.</p><p><strong>Methods: </strong>A total of 486 patients with oral cancer in West China Hospital of Stomatology of Sichuan University and Sun Yat-sen Memorial Hospital of Sun Yat-sen University from 2024 March to July were selected by convenience sampling. We integrated clinical data and evidence from previous studies to identify the key variables affecting the demoralization syndrome in patients with oral cancer. The 486 patients were divided into a training set and a validation set in an 8∶2 ratio. A clinical risk prediction model was established based on the individual data of 365 patients in the development cohort. Through least absolute shrinkage and selection operator (LASSO) regression, a moderate to severe risk prediction model of demoralization syndrome in oral cancer was constructed, and a clinical machine-learning nomogram was constructed. Bootstrap resampling was used for internal validation. The data of 121 patients in the validation cohort were externally validated.</p><p><strong>Results: </strong>The incidence of the demoralization syndrome in patients with oral cancer was 405 cases (83.3%), of which 279 cases (57.4%) were mild, 176 cases (36.2%) were moderate, and 31 cases (6.4%) were severe. The core model, including patient education level, disease understanding, and MDASI-HN score, was used to predict the risk of outcome. Internal validation of the model yielded C statistic of 0.783 6 (95% CI: 0.78-0.87), beta of 0.843 4, and calibration intercept of -0.040 6. Through external validation, the validation set C statistic was 0.80 (95%CI: 0.71-0.87), beta was 0.80, and calibration intercept was -0.08.</p><p><strong>Conclusions: </strong>Our risk prediction mo-del of the demoralization syndrome in patients with oral cancer performed robustly in validation cohorts of different nur-sing environments. The model has good correction and good discrimination and can be used as an evaluation and prediction item at admission.</p>\",\"PeriodicalId\":94028,\"journal\":{\"name\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"volume\":\"43 3\",\"pages\":\"395-405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211499/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7518/hxkq.2025.2024340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7518/hxkq.2025.2024340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Risk prediction of demoralization syndrome in patients with oral cancer].
Objectives: This study aimed to construct a risk prediction model for the occurrence of the demora-lization syndrome in patients with oral cancer and provide a scientific basis for the prevention of this syndrome in patients with oral cancer and the development of personalized care programs.
Methods: A total of 486 patients with oral cancer in West China Hospital of Stomatology of Sichuan University and Sun Yat-sen Memorial Hospital of Sun Yat-sen University from 2024 March to July were selected by convenience sampling. We integrated clinical data and evidence from previous studies to identify the key variables affecting the demoralization syndrome in patients with oral cancer. The 486 patients were divided into a training set and a validation set in an 8∶2 ratio. A clinical risk prediction model was established based on the individual data of 365 patients in the development cohort. Through least absolute shrinkage and selection operator (LASSO) regression, a moderate to severe risk prediction model of demoralization syndrome in oral cancer was constructed, and a clinical machine-learning nomogram was constructed. Bootstrap resampling was used for internal validation. The data of 121 patients in the validation cohort were externally validated.
Results: The incidence of the demoralization syndrome in patients with oral cancer was 405 cases (83.3%), of which 279 cases (57.4%) were mild, 176 cases (36.2%) were moderate, and 31 cases (6.4%) were severe. The core model, including patient education level, disease understanding, and MDASI-HN score, was used to predict the risk of outcome. Internal validation of the model yielded C statistic of 0.783 6 (95% CI: 0.78-0.87), beta of 0.843 4, and calibration intercept of -0.040 6. Through external validation, the validation set C statistic was 0.80 (95%CI: 0.71-0.87), beta was 0.80, and calibration intercept was -0.08.
Conclusions: Our risk prediction mo-del of the demoralization syndrome in patients with oral cancer performed robustly in validation cohorts of different nur-sing environments. The model has good correction and good discrimination and can be used as an evaluation and prediction item at admission.