{"title":"猴子和人类对脂肪、糖和口腔感官食物品质的偏好。","authors":"Fei-Yang Huang (黃飛揚), Fabian Grabenhorst","doi":"10.1016/j.physbeh.2025.114998","DOIUrl":null,"url":null,"abstract":"<div><div>In humans and other primates, food intake depends on sophisticated, individualized preferences for nutrients and oral-sensory food qualities that guide decision-making and eating behavior. The neural and behavioral mechanisms for such primate-typical food preferences remain poorly understood, despite their importance for human health and their targeting by pharmacological obesity treatments. Here, we review a series of experiments that investigated how the biologically critical properties of foods—their nutrients (sugar, fat, protein) and oral-sensory qualities (viscosity, oral sliding friction)—influence food preferences in monkeys and humans. In an economic nutrient-choice paradigm, macaques flexibly trade nutrients and oral-sensory food qualities against varying food amounts, consistent with the assignment of subjective values. Nutrient-value functions that link objective nutrient content to subjective values accurately model these preferences, predict choices across contexts, and explain individual differences. The monkeys’ aggregated choice patterns resulting from their nutrient preferences lead to daily nutrient balances that deviate from dietary reference points, resembling suboptimal human eating patterns when exposed to high-calorie foods. To investigate the sensory basis underlying nutrient values, we developed novel engineering tools that quantify food textures on oral surfaces, using fresh pig tongues. Oral-texture (i.e., mouthfeel) parameters, including viscosity and sliding friction, were shown to mediate monkeys' preferences for high-fat foods. When translated to human subjects, this approach revealed a neural mechanism for preferring high-fat foods from oral texture in the orbitofrontal cortex (OFC)—a key reward system of the brain. Importantly, human OFC responses to oral sliding friction in individual subjects—measured in the MRI scanner—predicted subsequent fat intake in a naturalistic, life-like eating test. These findings suggest that a primate nutrient-reward paradigm offers a promising approach for investigating the behavioral and neural mechanisms for human-typical food reward and food choice, to advance understanding of human eating behavior, overeating, and obesity.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"299 ","pages":"Article 114998"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preferences for fat, sugar, and oral-sensory food qualities in monkeys and humans\",\"authors\":\"Fei-Yang Huang (黃飛揚), Fabian Grabenhorst\",\"doi\":\"10.1016/j.physbeh.2025.114998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In humans and other primates, food intake depends on sophisticated, individualized preferences for nutrients and oral-sensory food qualities that guide decision-making and eating behavior. The neural and behavioral mechanisms for such primate-typical food preferences remain poorly understood, despite their importance for human health and their targeting by pharmacological obesity treatments. Here, we review a series of experiments that investigated how the biologically critical properties of foods—their nutrients (sugar, fat, protein) and oral-sensory qualities (viscosity, oral sliding friction)—influence food preferences in monkeys and humans. In an economic nutrient-choice paradigm, macaques flexibly trade nutrients and oral-sensory food qualities against varying food amounts, consistent with the assignment of subjective values. Nutrient-value functions that link objective nutrient content to subjective values accurately model these preferences, predict choices across contexts, and explain individual differences. The monkeys’ aggregated choice patterns resulting from their nutrient preferences lead to daily nutrient balances that deviate from dietary reference points, resembling suboptimal human eating patterns when exposed to high-calorie foods. To investigate the sensory basis underlying nutrient values, we developed novel engineering tools that quantify food textures on oral surfaces, using fresh pig tongues. Oral-texture (i.e., mouthfeel) parameters, including viscosity and sliding friction, were shown to mediate monkeys' preferences for high-fat foods. When translated to human subjects, this approach revealed a neural mechanism for preferring high-fat foods from oral texture in the orbitofrontal cortex (OFC)—a key reward system of the brain. Importantly, human OFC responses to oral sliding friction in individual subjects—measured in the MRI scanner—predicted subsequent fat intake in a naturalistic, life-like eating test. These findings suggest that a primate nutrient-reward paradigm offers a promising approach for investigating the behavioral and neural mechanisms for human-typical food reward and food choice, to advance understanding of human eating behavior, overeating, and obesity.</div></div>\",\"PeriodicalId\":20201,\"journal\":{\"name\":\"Physiology & Behavior\",\"volume\":\"299 \",\"pages\":\"Article 114998\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology & Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031938425001994\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938425001994","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Preferences for fat, sugar, and oral-sensory food qualities in monkeys and humans
In humans and other primates, food intake depends on sophisticated, individualized preferences for nutrients and oral-sensory food qualities that guide decision-making and eating behavior. The neural and behavioral mechanisms for such primate-typical food preferences remain poorly understood, despite their importance for human health and their targeting by pharmacological obesity treatments. Here, we review a series of experiments that investigated how the biologically critical properties of foods—their nutrients (sugar, fat, protein) and oral-sensory qualities (viscosity, oral sliding friction)—influence food preferences in monkeys and humans. In an economic nutrient-choice paradigm, macaques flexibly trade nutrients and oral-sensory food qualities against varying food amounts, consistent with the assignment of subjective values. Nutrient-value functions that link objective nutrient content to subjective values accurately model these preferences, predict choices across contexts, and explain individual differences. The monkeys’ aggregated choice patterns resulting from their nutrient preferences lead to daily nutrient balances that deviate from dietary reference points, resembling suboptimal human eating patterns when exposed to high-calorie foods. To investigate the sensory basis underlying nutrient values, we developed novel engineering tools that quantify food textures on oral surfaces, using fresh pig tongues. Oral-texture (i.e., mouthfeel) parameters, including viscosity and sliding friction, were shown to mediate monkeys' preferences for high-fat foods. When translated to human subjects, this approach revealed a neural mechanism for preferring high-fat foods from oral texture in the orbitofrontal cortex (OFC)—a key reward system of the brain. Importantly, human OFC responses to oral sliding friction in individual subjects—measured in the MRI scanner—predicted subsequent fat intake in a naturalistic, life-like eating test. These findings suggest that a primate nutrient-reward paradigm offers a promising approach for investigating the behavioral and neural mechanisms for human-typical food reward and food choice, to advance understanding of human eating behavior, overeating, and obesity.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.