压缩感知缩短7T MP2RAGE采集:评估定量准确性和结构一致性。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-06-16 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0325783
Ikuhiro Kida
{"title":"压缩感知缩短7T MP2RAGE采集:评估定量准确性和结构一致性。","authors":"Ikuhiro Kida","doi":"10.1371/journal.pone.0325783","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to systematically evaluate the impact of compressed sensing (CS) on acquisition time, image quality, T1 mapping accuracy, and segmentation consistency in magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) at ultra-high fields (UHF). MP2RAGE sequences were acquired using the CS and parallel imaging (PI) technique, i.e., generalized autocalibrating partially parallel acquisitions (GRAPPA), with varying undersampling factors and samples per repetition time (TR). The acquisition time, quantitative accuracy of T1 mapping, and segmentation consistency across regions of interest (ROIs) were assessed. CS-MP2RAGE achieved a 61% reduction in acquisition time (< 3 min) compared with PI-MP2RAGE and maintained comparable image quality, segmentation accuracy, and T1-mapping fidelity. Higher undersampling factors effectively reduced scan duration but introduced segmentation volume mismatches of up to 20% and increased T1 values, despite the images appearing similar to PI-MP2RAGE. Reducing the number of samples per TR enhanced image quality, allowing for higher undersampling factors without a significant loss of fidelity, a finding consistent with previous studies. However, excessively low sampling densities destabilized reconstruction in complex ROIs. Our findings demonstrate that CS-MP2RAGE significantly reduces scan time while maintaining high image quality and quantitative accuracy, making it a viable alternative to GRAPPA in UHF applications. The interplay between undersampling factors and samples per TR is crucial for optimizing scan efficiency. Future studies should explore its application in clinical and research settings.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0325783"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169513/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shortening 7T MP2RAGE acquisition with compressed sensing: Evaluating quantitative accuracy and structural consistency.\",\"authors\":\"Ikuhiro Kida\",\"doi\":\"10.1371/journal.pone.0325783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to systematically evaluate the impact of compressed sensing (CS) on acquisition time, image quality, T1 mapping accuracy, and segmentation consistency in magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) at ultra-high fields (UHF). MP2RAGE sequences were acquired using the CS and parallel imaging (PI) technique, i.e., generalized autocalibrating partially parallel acquisitions (GRAPPA), with varying undersampling factors and samples per repetition time (TR). The acquisition time, quantitative accuracy of T1 mapping, and segmentation consistency across regions of interest (ROIs) were assessed. CS-MP2RAGE achieved a 61% reduction in acquisition time (< 3 min) compared with PI-MP2RAGE and maintained comparable image quality, segmentation accuracy, and T1-mapping fidelity. Higher undersampling factors effectively reduced scan duration but introduced segmentation volume mismatches of up to 20% and increased T1 values, despite the images appearing similar to PI-MP2RAGE. Reducing the number of samples per TR enhanced image quality, allowing for higher undersampling factors without a significant loss of fidelity, a finding consistent with previous studies. However, excessively low sampling densities destabilized reconstruction in complex ROIs. Our findings demonstrate that CS-MP2RAGE significantly reduces scan time while maintaining high image quality and quantitative accuracy, making it a viable alternative to GRAPPA in UHF applications. The interplay between undersampling factors and samples per TR is crucial for optimizing scan efficiency. Future studies should explore its application in clinical and research settings.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 6\",\"pages\":\"e0325783\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169513/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0325783\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0325783","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是系统评估压缩感知(CS)对超高场(UHF)下磁化制备的2快速采集梯度回波(MP2RAGE)的采集时间、图像质量、T1映射精度和分割一致性的影响。MP2RAGE序列采用CS和并行成像(PI)技术,即广义自校准部分并行采集(GRAPPA),具有不同的欠采样因子和每次重复时间(TR)的样本。评估了获取时间、T1映射的定量准确性和兴趣区域(roi)的分割一致性。与PI-MP2RAGE相比,CS-MP2RAGE的采集时间(< 3分钟)减少了61%,并保持了相当的图像质量、分割精度和t1映射保真度。尽管图像看起来与PI-MP2RAGE相似,但较高的采样不足系数有效地缩短了扫描时间,但引入了高达20%的分割体积不匹配并增加了T1值。减少每个TR的样本数量增强了图像质量,允许更高的欠采样因子而不会显着损失保真度,这一发现与先前的研究一致。然而,在复杂roi中,过低的采样密度会破坏重建的稳定性。我们的研究结果表明,CS-MP2RAGE在保持高图像质量和定量精度的同时显著缩短了扫描时间,使其成为超高频应用中GRAPPA的可行替代方案。欠采样因素和每TR采样之间的相互作用对于优化扫描效率至关重要。未来的研究应探索其在临床和研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shortening 7T MP2RAGE acquisition with compressed sensing: Evaluating quantitative accuracy and structural consistency.

Shortening 7T MP2RAGE acquisition with compressed sensing: Evaluating quantitative accuracy and structural consistency.

Shortening 7T MP2RAGE acquisition with compressed sensing: Evaluating quantitative accuracy and structural consistency.

Shortening 7T MP2RAGE acquisition with compressed sensing: Evaluating quantitative accuracy and structural consistency.

The aim of this study was to systematically evaluate the impact of compressed sensing (CS) on acquisition time, image quality, T1 mapping accuracy, and segmentation consistency in magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) at ultra-high fields (UHF). MP2RAGE sequences were acquired using the CS and parallel imaging (PI) technique, i.e., generalized autocalibrating partially parallel acquisitions (GRAPPA), with varying undersampling factors and samples per repetition time (TR). The acquisition time, quantitative accuracy of T1 mapping, and segmentation consistency across regions of interest (ROIs) were assessed. CS-MP2RAGE achieved a 61% reduction in acquisition time (< 3 min) compared with PI-MP2RAGE and maintained comparable image quality, segmentation accuracy, and T1-mapping fidelity. Higher undersampling factors effectively reduced scan duration but introduced segmentation volume mismatches of up to 20% and increased T1 values, despite the images appearing similar to PI-MP2RAGE. Reducing the number of samples per TR enhanced image quality, allowing for higher undersampling factors without a significant loss of fidelity, a finding consistent with previous studies. However, excessively low sampling densities destabilized reconstruction in complex ROIs. Our findings demonstrate that CS-MP2RAGE significantly reduces scan time while maintaining high image quality and quantitative accuracy, making it a viable alternative to GRAPPA in UHF applications. The interplay between undersampling factors and samples per TR is crucial for optimizing scan efficiency. Future studies should explore its application in clinical and research settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信