基于gc - ms的化学分析揭示了人参皂苷Rg1在斑马鱼创伤模型中的抗炎活性。

IF 2.1 4区 医学 Q3 CHEMISTRY, MEDICINAL
Planta medica Pub Date : 2025-06-16 DOI:10.1055/a-2606-6705
Su-Jung Hsu, Min He, Luis Francisco Salomé-Abarca, Young Hae Choi, Mei Wang
{"title":"基于gc - ms的化学分析揭示了人参皂苷Rg1在斑马鱼创伤模型中的抗炎活性。","authors":"Su-Jung Hsu, Min He, Luis Francisco Salomé-Abarca, Young Hae Choi, Mei Wang","doi":"10.1055/a-2606-6705","DOIUrl":null,"url":null,"abstract":"<p><p>There is growing evidence highlighting the pivotal role of cellular metabolic adaptation in governing diverse immune responses, as well as the capacity of immune cells to alter metabolic preferences. In both scenarios, the prospect of leveraging bioactive compounds to induce metabolic reprogramming emerges as a novel adjuvant strategy for clinical immunotherapy. Rg1, a major active ginsenoside found in ginseng roots, has the potential to function as a glucocorticoid receptor agonist. Unraveling the intricate relationship between anti-inflammatory functions and the metabolic effects of ginsenosides and glucocorticoids may contribute to the identification of metabolic biomarkers associated with anti-inflammation. This research aims to determine endogenous metabolic response differences evoked by Rg1 and glucocorticoids underlying <i>in vivo</i> anti-inflammatory responses. The metabolic impact, particularly on primary metabolites, was assessed in zebrafish embryos using gas chromatography-mass spectrometry (GC-MS) in conjunction with metabolic pathways analysis via the KEGG pathway database. Our results indicated that Rg1 possesses a similar effect in alleviating inflammation in treating injured zebrafish as beclomethasone. The anti-inflammatory effects of Rg1 are achieved by inhibiting the neutrophils and macrophages toward the amputated edges and upregulating gene expression associated with pro-inflammatory cytokines. The anti-inflammatory effects of Rg1 also include changes in fatty-acid metabolism and downstream aromatic amino acids in the TCA cycle. Therefore, Rg1 may be a promising drug candidate for treating inflammatory responses and a valuable supplement for enhancing immune regulation.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering Anti-Inflammatory Activity of Ginsenoside Rg1 in a Wound-Inured Zebrafish Model by GC-MS-based Chemical Profiling.\",\"authors\":\"Su-Jung Hsu, Min He, Luis Francisco Salomé-Abarca, Young Hae Choi, Mei Wang\",\"doi\":\"10.1055/a-2606-6705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is growing evidence highlighting the pivotal role of cellular metabolic adaptation in governing diverse immune responses, as well as the capacity of immune cells to alter metabolic preferences. In both scenarios, the prospect of leveraging bioactive compounds to induce metabolic reprogramming emerges as a novel adjuvant strategy for clinical immunotherapy. Rg1, a major active ginsenoside found in ginseng roots, has the potential to function as a glucocorticoid receptor agonist. Unraveling the intricate relationship between anti-inflammatory functions and the metabolic effects of ginsenosides and glucocorticoids may contribute to the identification of metabolic biomarkers associated with anti-inflammation. This research aims to determine endogenous metabolic response differences evoked by Rg1 and glucocorticoids underlying <i>in vivo</i> anti-inflammatory responses. The metabolic impact, particularly on primary metabolites, was assessed in zebrafish embryos using gas chromatography-mass spectrometry (GC-MS) in conjunction with metabolic pathways analysis via the KEGG pathway database. Our results indicated that Rg1 possesses a similar effect in alleviating inflammation in treating injured zebrafish as beclomethasone. The anti-inflammatory effects of Rg1 are achieved by inhibiting the neutrophils and macrophages toward the amputated edges and upregulating gene expression associated with pro-inflammatory cytokines. The anti-inflammatory effects of Rg1 also include changes in fatty-acid metabolism and downstream aromatic amino acids in the TCA cycle. Therefore, Rg1 may be a promising drug candidate for treating inflammatory responses and a valuable supplement for enhancing immune regulation.</p>\",\"PeriodicalId\":20127,\"journal\":{\"name\":\"Planta medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2606-6705\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2606-6705","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据强调细胞代谢适应在控制多种免疫反应中的关键作用,以及免疫细胞改变代谢偏好的能力。在这两种情况下,利用生物活性化合物诱导代谢重编程的前景成为临床免疫治疗的一种新的辅助策略。Rg1是人参根中发现的一种主要活性人参皂苷,具有糖皮质激素受体激动剂的作用。揭示人参皂苷和糖皮质激素的抗炎功能与代谢作用之间的复杂关系可能有助于识别与抗炎相关的代谢生物标志物。本研究旨在确定体内抗炎反应中Rg1和糖皮质激素引起的内源性代谢反应差异。利用气相色谱-质谱(GC-MS)结合KEGG通路数据库的代谢途径分析,在斑马鱼胚胎中评估了代谢影响,特别是对初级代谢物的影响。我们的研究结果表明,Rg1在治疗受伤斑马鱼时具有与倍氯米松相似的减轻炎症的作用。Rg1的抗炎作用是通过抑制中性粒细胞和巨噬细胞向断肢边缘移动,上调与促炎细胞因子相关的基因表达来实现的。Rg1的抗炎作用还包括脂肪酸代谢和下游芳香族氨基酸在TCA循环中的变化。因此,Rg1可能是治疗炎症反应的有希望的候选药物,也是增强免疫调节的有价值的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering Anti-Inflammatory Activity of Ginsenoside Rg1 in a Wound-Inured Zebrafish Model by GC-MS-based Chemical Profiling.

There is growing evidence highlighting the pivotal role of cellular metabolic adaptation in governing diverse immune responses, as well as the capacity of immune cells to alter metabolic preferences. In both scenarios, the prospect of leveraging bioactive compounds to induce metabolic reprogramming emerges as a novel adjuvant strategy for clinical immunotherapy. Rg1, a major active ginsenoside found in ginseng roots, has the potential to function as a glucocorticoid receptor agonist. Unraveling the intricate relationship between anti-inflammatory functions and the metabolic effects of ginsenosides and glucocorticoids may contribute to the identification of metabolic biomarkers associated with anti-inflammation. This research aims to determine endogenous metabolic response differences evoked by Rg1 and glucocorticoids underlying in vivo anti-inflammatory responses. The metabolic impact, particularly on primary metabolites, was assessed in zebrafish embryos using gas chromatography-mass spectrometry (GC-MS) in conjunction with metabolic pathways analysis via the KEGG pathway database. Our results indicated that Rg1 possesses a similar effect in alleviating inflammation in treating injured zebrafish as beclomethasone. The anti-inflammatory effects of Rg1 are achieved by inhibiting the neutrophils and macrophages toward the amputated edges and upregulating gene expression associated with pro-inflammatory cytokines. The anti-inflammatory effects of Rg1 also include changes in fatty-acid metabolism and downstream aromatic amino acids in the TCA cycle. Therefore, Rg1 may be a promising drug candidate for treating inflammatory responses and a valuable supplement for enhancing immune regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Planta medica
Planta medica 医学-药学
CiteScore
5.10
自引率
3.70%
发文量
101
审稿时长
1.8 months
期刊介绍: Planta Medica is one of the leading international journals in the field of natural products – including marine organisms, fungi as well as micro-organisms – and medicinal plants. Planta Medica accepts original research papers, reviews, minireviews and perspectives from researchers worldwide. The journal publishes 18 issues per year. The following areas of medicinal plants and natural product research are covered: -Biological and Pharmacological Activities -Natural Product Chemistry & Analytical Studies -Pharmacokinetic Investigations -Formulation and Delivery Systems of Natural Products. The journal explicitly encourages the submission of chemically characterized extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信