TCANet:用于运动意象脑电解码的时间卷积注意网络。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-06-14 DOI:10.1007/s11571-025-10275-5
Wei Zhao, Haodong Lu, Baocan Zhang, Xinwang Zheng, Wenfeng Wang, Haifeng Zhou
{"title":"TCANet:用于运动意象脑电解码的时间卷积注意网络。","authors":"Wei Zhao, Haodong Lu, Baocan Zhang, Xinwang Zheng, Wenfeng Wang, Haifeng Zhou","doi":"10.1007/s11571-025-10275-5","DOIUrl":null,"url":null,"abstract":"<p><p>Decoding motor imagery electroencephalogram (MI-EEG) signals is fundamental to the development of brain-computer interface (BCI) systems. However, robust decoding remains a challenge due to the inherent complexity and variability of MI-EEG signals. This study proposes the Temporal Convolutional Attention Network (TCANet), a novel end-to-end model that hierarchically captures spatiotemporal dependencies by progressively integrating local, fused, and global features. Specifically, TCANet employs a multi-scale convolutional module to extract local spatiotemporal representations across multiple temporal resolutions. A temporal convolutional module then fuses and compresses these multi-scale features while modeling both short- and long-term dependencies. Subsequently, a stacked multi-head self-attention mechanism refines the global representations, followed by a fully connected layer that performs MI-EEG classification. The proposed model was systematically evaluated on the BCI IV-2a and IV-2b datasets under both subject-dependent and subject-independent settings. In subject-dependent classification, TCANet achieved accuracies of 83.06% and 88.52% on BCI IV-2a and IV-2b respectively, with corresponding Kappa values of 0.7742 and 0.7703, outperforming multiple representative baselines. In the more challenging subject-independent setting, TCANet achieved competitive performance on IV-2a and demonstrated potential for improvement on IV-2b. The code is available at https://github.com/snailpt/TCANet.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"91"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167204/pdf/","citationCount":"0","resultStr":"{\"title\":\"TCANet: a temporal convolutional attention network for motor imagery EEG decoding.\",\"authors\":\"Wei Zhao, Haodong Lu, Baocan Zhang, Xinwang Zheng, Wenfeng Wang, Haifeng Zhou\",\"doi\":\"10.1007/s11571-025-10275-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decoding motor imagery electroencephalogram (MI-EEG) signals is fundamental to the development of brain-computer interface (BCI) systems. However, robust decoding remains a challenge due to the inherent complexity and variability of MI-EEG signals. This study proposes the Temporal Convolutional Attention Network (TCANet), a novel end-to-end model that hierarchically captures spatiotemporal dependencies by progressively integrating local, fused, and global features. Specifically, TCANet employs a multi-scale convolutional module to extract local spatiotemporal representations across multiple temporal resolutions. A temporal convolutional module then fuses and compresses these multi-scale features while modeling both short- and long-term dependencies. Subsequently, a stacked multi-head self-attention mechanism refines the global representations, followed by a fully connected layer that performs MI-EEG classification. The proposed model was systematically evaluated on the BCI IV-2a and IV-2b datasets under both subject-dependent and subject-independent settings. In subject-dependent classification, TCANet achieved accuracies of 83.06% and 88.52% on BCI IV-2a and IV-2b respectively, with corresponding Kappa values of 0.7742 and 0.7703, outperforming multiple representative baselines. In the more challenging subject-independent setting, TCANet achieved competitive performance on IV-2a and demonstrated potential for improvement on IV-2b. The code is available at https://github.com/snailpt/TCANet.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"91\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10275-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10275-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

运动图像脑电图(MI-EEG)信号的解码是脑机接口(BCI)系统发展的基础。然而,由于MI-EEG信号固有的复杂性和可变性,鲁棒解码仍然是一个挑战。本研究提出了时间卷积注意网络(TCANet),这是一种新颖的端到端模型,通过逐步整合局部、融合和全局特征,分层次捕获时空依赖关系。具体而言,TCANet采用多尺度卷积模块来提取跨多个时间分辨率的局部时空表示。然后,一个时间卷积模块融合并压缩这些多尺度特征,同时对短期和长期依赖关系进行建模。随后,一个堆叠的多头自注意机制细化了全局表示,然后是一个执行MI-EEG分类的全连接层。在受试者依赖和受试者独立设置下,对所提出的模型在BCI IV-2a和IV-2b数据集上进行了系统评估。在主题依赖分类中,TCANet在BCI IV-2a和IV-2b上的准确率分别为83.06%和88.52%,Kappa值分别为0.7742和0.7703,优于多个代表性基线。在更具挑战性的科目独立设置中,TCANet在IV-2a上取得了具有竞争力的表现,并在IV-2b上展示了改进的潜力。代码可在https://github.com/snailpt/TCANet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TCANet: a temporal convolutional attention network for motor imagery EEG decoding.

Decoding motor imagery electroencephalogram (MI-EEG) signals is fundamental to the development of brain-computer interface (BCI) systems. However, robust decoding remains a challenge due to the inherent complexity and variability of MI-EEG signals. This study proposes the Temporal Convolutional Attention Network (TCANet), a novel end-to-end model that hierarchically captures spatiotemporal dependencies by progressively integrating local, fused, and global features. Specifically, TCANet employs a multi-scale convolutional module to extract local spatiotemporal representations across multiple temporal resolutions. A temporal convolutional module then fuses and compresses these multi-scale features while modeling both short- and long-term dependencies. Subsequently, a stacked multi-head self-attention mechanism refines the global representations, followed by a fully connected layer that performs MI-EEG classification. The proposed model was systematically evaluated on the BCI IV-2a and IV-2b datasets under both subject-dependent and subject-independent settings. In subject-dependent classification, TCANet achieved accuracies of 83.06% and 88.52% on BCI IV-2a and IV-2b respectively, with corresponding Kappa values of 0.7742 and 0.7703, outperforming multiple representative baselines. In the more challenging subject-independent setting, TCANet achieved competitive performance on IV-2a and demonstrated potential for improvement on IV-2b. The code is available at https://github.com/snailpt/TCANet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信