Wenbo Lin, Yanfeng Li, Xirui Liu, Rui Xu, Jiajing Huang, Zhiyuan Jiang, Zhiguo Qu, Kai Xi, Yue Lin
{"title":"通过氢键工程提高氮化硼聚合物复合材料导热性能。","authors":"Wenbo Lin, Yanfeng Li, Xirui Liu, Rui Xu, Jiajing Huang, Zhiyuan Jiang, Zhiguo Qu, Kai Xi, Yue Lin","doi":"10.1039/d5mh00738k","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing the thermal conductivity of polymer-based composites is critical for effective thermal management in power electronics. A common strategy involves incorporating high-thermal-conductivity fillers such as graphene and boron nitride nanosheets (BNNS). However, practical enhancements often fall short of theoretical predictions due to interfacial thermal resistance (<i>R</i><sub>Kapitza</sub>). Here, we address this challenge by engineering the hydrogen bond density (HBD) at the filler-matrix interface. By grafting 3,4-dihydroxyphenylalanine (DOPA) onto polyvinyl alcohol (PVA), we synthesized PVA-D<i>X</i> matrices (<i>X</i> = 0, 8, 12, 17, 24) with tunable HBDs. Incorporation of BNNS into these matrices revealed that higher interfacial HBD significantly reduces <i>R</i><sub>Kapitza</sub>, thereby enhancing the composite's thermal conductivity (<i>κ</i><sub>c</sub>). We achieved an exceptionally low <i>R</i><sub>Kapitza</sub> of 0.60 × 10<sup>-8</sup> m<sup>2</sup> K W<sup>-1</sup>, corresponding to a filler effectiveness (<i>κ</i><sub>c</sub>/∅<sub>f</sub>) of 120 W m<sup>-1</sup> K<sup>-1</sup>. Notably, at a BNNS loading of 70 vol%, increasing the interfacial HBD to 2.14 mmol cm<sup>-3</sup> achieves a <i>κ</i><sub>c</sub> of 51.01 W m<sup>-1</sup> K<sup>-1</sup>, which is 1.45 times higher than the 35.29 W m<sup>-1</sup> K<sup>-1</sup> attained at an HBD of 0.5 mmol cm<sup>-3</sup>. This study underscores the critical role of interfacial hydrogen bonding in optimizing thermal transport and provides a robust framework for designing high-performance polymer composites for advanced thermal management applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting thermal conductivity of boron nitride incorporated polymer composites <i>via</i> hydrogen bonding engineering.\",\"authors\":\"Wenbo Lin, Yanfeng Li, Xirui Liu, Rui Xu, Jiajing Huang, Zhiyuan Jiang, Zhiguo Qu, Kai Xi, Yue Lin\",\"doi\":\"10.1039/d5mh00738k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhancing the thermal conductivity of polymer-based composites is critical for effective thermal management in power electronics. A common strategy involves incorporating high-thermal-conductivity fillers such as graphene and boron nitride nanosheets (BNNS). However, practical enhancements often fall short of theoretical predictions due to interfacial thermal resistance (<i>R</i><sub>Kapitza</sub>). Here, we address this challenge by engineering the hydrogen bond density (HBD) at the filler-matrix interface. By grafting 3,4-dihydroxyphenylalanine (DOPA) onto polyvinyl alcohol (PVA), we synthesized PVA-D<i>X</i> matrices (<i>X</i> = 0, 8, 12, 17, 24) with tunable HBDs. Incorporation of BNNS into these matrices revealed that higher interfacial HBD significantly reduces <i>R</i><sub>Kapitza</sub>, thereby enhancing the composite's thermal conductivity (<i>κ</i><sub>c</sub>). We achieved an exceptionally low <i>R</i><sub>Kapitza</sub> of 0.60 × 10<sup>-8</sup> m<sup>2</sup> K W<sup>-1</sup>, corresponding to a filler effectiveness (<i>κ</i><sub>c</sub>/∅<sub>f</sub>) of 120 W m<sup>-1</sup> K<sup>-1</sup>. Notably, at a BNNS loading of 70 vol%, increasing the interfacial HBD to 2.14 mmol cm<sup>-3</sup> achieves a <i>κ</i><sub>c</sub> of 51.01 W m<sup>-1</sup> K<sup>-1</sup>, which is 1.45 times higher than the 35.29 W m<sup>-1</sup> K<sup>-1</sup> attained at an HBD of 0.5 mmol cm<sup>-3</sup>. This study underscores the critical role of interfacial hydrogen bonding in optimizing thermal transport and provides a robust framework for designing high-performance polymer composites for advanced thermal management applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00738k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00738k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
提高聚合物基复合材料的导热性对于电力电子产品的有效热管理至关重要。一种常见的策略是加入高导热填料,如石墨烯和氮化硼纳米片(BNNS)。然而,由于界面热阻的原因,实际的增强往往达不到理论预测(RKapitza)。在这里,我们通过设计填料-基质界面的氢键密度(HBD)来解决这一挑战。通过将3,4-二羟基苯丙氨酸(DOPA)接枝到聚乙烯醇(PVA)上,合成了具有可调HBDs的PVA- dx矩阵(X = 0,8,12,17,24)。将BNNS加入到这些基质中表明,较高的界面HBD显著降低了RKapitza,从而提高了复合材料的导热系数(κc)。我们获得了0.60 × 10-8 m2 K W-1的极低RKapitza,对应于填充效率(κc/∅f)为120 W m-1 K-1。值得注意的是,当BNNS负载为70 vol%时,将界面HBD增加到2.14 mmol cm-3,其κc为51.01 W m-1 K-1,是HBD为0.5 mmol cm-3时的35.29 W m-1 K-1的1.45倍。这项研究强调了界面氢键在优化热传递中的关键作用,并为设计高性能聚合物复合材料提供了一个强大的框架,用于先进的热管理应用。
Boosting thermal conductivity of boron nitride incorporated polymer composites via hydrogen bonding engineering.
Enhancing the thermal conductivity of polymer-based composites is critical for effective thermal management in power electronics. A common strategy involves incorporating high-thermal-conductivity fillers such as graphene and boron nitride nanosheets (BNNS). However, practical enhancements often fall short of theoretical predictions due to interfacial thermal resistance (RKapitza). Here, we address this challenge by engineering the hydrogen bond density (HBD) at the filler-matrix interface. By grafting 3,4-dihydroxyphenylalanine (DOPA) onto polyvinyl alcohol (PVA), we synthesized PVA-DX matrices (X = 0, 8, 12, 17, 24) with tunable HBDs. Incorporation of BNNS into these matrices revealed that higher interfacial HBD significantly reduces RKapitza, thereby enhancing the composite's thermal conductivity (κc). We achieved an exceptionally low RKapitza of 0.60 × 10-8 m2 K W-1, corresponding to a filler effectiveness (κc/∅f) of 120 W m-1 K-1. Notably, at a BNNS loading of 70 vol%, increasing the interfacial HBD to 2.14 mmol cm-3 achieves a κc of 51.01 W m-1 K-1, which is 1.45 times higher than the 35.29 W m-1 K-1 attained at an HBD of 0.5 mmol cm-3. This study underscores the critical role of interfacial hydrogen bonding in optimizing thermal transport and provides a robust framework for designing high-performance polymer composites for advanced thermal management applications.