基于人工智能的高熵合金设计方法综述

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nour Mahmoud Eldabah, Ayush Pratap, Atul Pandey, Neha Sardana, Sarabjeet Singh Sidhu, Mohamed Abdel-Hady Gepreel
{"title":"基于人工智能的高熵合金设计方法综述","authors":"Nour Mahmoud Eldabah,&nbsp;Ayush Pratap,&nbsp;Atul Pandey,&nbsp;Neha Sardana,&nbsp;Sarabjeet Singh Sidhu,&nbsp;Mohamed Abdel-Hady Gepreel","doi":"10.1002/adem.202402504","DOIUrl":null,"url":null,"abstract":"<p>This review explores the complex process of designing high-entropy alloys by combining theoretical guidelines, thermodynamic characteristics, and several modeling tools, including artificial intelligence approaches. It tackles issues in the design of high-entropy alloys, emphasizing the wide composition range, difficulty in forecasting phase stability, and requirement for specialized production techniques. The investigation expands on strategies for creating high-entropy alloys, emphasizing their benefits and limitations. This article discusses machine learning applications for predicting elastic characteristics, as well as the accompanying challenges and solutions. The future scenario predicts a collaborative world in which machine learning plays a critical role in the data-driven alloy design of high-entropy alloys, emphasizing ethical considerations and continual experimental validation for practical advances across industries.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Approaches of High-Entropy Alloys Using Artificial Intelligence: A Review\",\"authors\":\"Nour Mahmoud Eldabah,&nbsp;Ayush Pratap,&nbsp;Atul Pandey,&nbsp;Neha Sardana,&nbsp;Sarabjeet Singh Sidhu,&nbsp;Mohamed Abdel-Hady Gepreel\",\"doi\":\"10.1002/adem.202402504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review explores the complex process of designing high-entropy alloys by combining theoretical guidelines, thermodynamic characteristics, and several modeling tools, including artificial intelligence approaches. It tackles issues in the design of high-entropy alloys, emphasizing the wide composition range, difficulty in forecasting phase stability, and requirement for specialized production techniques. The investigation expands on strategies for creating high-entropy alloys, emphasizing their benefits and limitations. This article discusses machine learning applications for predicting elastic characteristics, as well as the accompanying challenges and solutions. The future scenario predicts a collaborative world in which machine learning plays a critical role in the data-driven alloy design of high-entropy alloys, emphasizing ethical considerations and continual experimental validation for practical advances across industries.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"27 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402504\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402504","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文结合理论指导、热力学特性和几种建模工具,包括人工智能方法,探讨了设计高熵合金的复杂过程。它解决了高熵合金的设计问题,强调成分范围广,相稳定性预测困难,以及对专业生产技术的要求。研究扩展了制造高熵合金的策略,强调了它们的优点和局限性。本文讨论了机器学习在预测弹性特性方面的应用,以及随之而来的挑战和解决方案。未来的情景预测了一个协作的世界,在这个世界中,机器学习在高熵合金的数据驱动合金设计中发挥着关键作用,强调道德考虑和持续的实验验证,以实现跨行业的实际进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design Approaches of High-Entropy Alloys Using Artificial Intelligence: A Review

Design Approaches of High-Entropy Alloys Using Artificial Intelligence: A Review

This review explores the complex process of designing high-entropy alloys by combining theoretical guidelines, thermodynamic characteristics, and several modeling tools, including artificial intelligence approaches. It tackles issues in the design of high-entropy alloys, emphasizing the wide composition range, difficulty in forecasting phase stability, and requirement for specialized production techniques. The investigation expands on strategies for creating high-entropy alloys, emphasizing their benefits and limitations. This article discusses machine learning applications for predicting elastic characteristics, as well as the accompanying challenges and solutions. The future scenario predicts a collaborative world in which machine learning plays a critical role in the data-driven alloy design of high-entropy alloys, emphasizing ethical considerations and continual experimental validation for practical advances across industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信