均衡海岸线模型只是卷积吗?

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Sean Vitousek, Daniel Buscombe, Eduardo Gomez-de la Peña, Kit Calcraft, Mark Lundine, Kristen D. Splinter, Giovanni Coco, Patrick L. Barnard
{"title":"均衡海岸线模型只是卷积吗?","authors":"Sean Vitousek,&nbsp;Daniel Buscombe,&nbsp;Eduardo Gomez-de la Peña,&nbsp;Kit Calcraft,&nbsp;Mark Lundine,&nbsp;Kristen D. Splinter,&nbsp;Giovanni Coco,&nbsp;Patrick L. Barnard","doi":"10.1029/2025JF008452","DOIUrl":null,"url":null,"abstract":"<p>Yes. Equilibrium shoreline models, which simulate wave-driven cross-shore erosion and accretion, are mathematically equivalent to a discrete convolution (i.e., a weighted, moving average) of a time series of wave-forcing conditions with a parameterized memory-decay kernel function. The direct equivalence between equilibrium shoreline models and convolutions reveals key theoretical aspects of equilibrium behavior. Convolutions (representing quasi-low-pass filter operations) provide an intuitive theoretical description of shoreline erosion and accretion behavior in response to waves: that is, shoreline position often mirrors the weighted moving average of wave time series. Model-convolution equivalence also provides a conceptual basis to interpret, evaluate, and construct data-driven Machine-Learning/Deep-Learning (ML/DL) models that use convolutions to extract features from data and then apply them for prediction (e.g., Convolutional Neural Networks (CNNs)). Finally, our findings provide a methodological pathway (based on Fourier transforms) for future understanding of wave-driven shoreline change, which can be used to interpret the coherence between the frequency spectrum of the processes of waves and shoreline change and construct more computationally efficient and effective shoreline-modeling approaches.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JF008452","citationCount":"0","resultStr":"{\"title\":\"Are Equilibrium Shoreline Models Just Convolutions?\",\"authors\":\"Sean Vitousek,&nbsp;Daniel Buscombe,&nbsp;Eduardo Gomez-de la Peña,&nbsp;Kit Calcraft,&nbsp;Mark Lundine,&nbsp;Kristen D. Splinter,&nbsp;Giovanni Coco,&nbsp;Patrick L. Barnard\",\"doi\":\"10.1029/2025JF008452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Yes. Equilibrium shoreline models, which simulate wave-driven cross-shore erosion and accretion, are mathematically equivalent to a discrete convolution (i.e., a weighted, moving average) of a time series of wave-forcing conditions with a parameterized memory-decay kernel function. The direct equivalence between equilibrium shoreline models and convolutions reveals key theoretical aspects of equilibrium behavior. Convolutions (representing quasi-low-pass filter operations) provide an intuitive theoretical description of shoreline erosion and accretion behavior in response to waves: that is, shoreline position often mirrors the weighted moving average of wave time series. Model-convolution equivalence also provides a conceptual basis to interpret, evaluate, and construct data-driven Machine-Learning/Deep-Learning (ML/DL) models that use convolutions to extract features from data and then apply them for prediction (e.g., Convolutional Neural Networks (CNNs)). Finally, our findings provide a methodological pathway (based on Fourier transforms) for future understanding of wave-driven shoreline change, which can be used to interpret the coherence between the frequency spectrum of the processes of waves and shoreline change and construct more computationally efficient and effective shoreline-modeling approaches.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"130 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JF008452\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JF008452\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JF008452","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

是。平衡海岸线模型,模拟波浪驱动的跨海岸侵蚀和吸积,在数学上等同于波浪强迫条件时间序列的离散卷积(即加权移动平均),具有参数化的记忆衰减核函数。平衡海岸线模型和卷积之间的直接等价揭示了平衡行为的关键理论方面。卷积(代表准低通滤波操作)提供了对波浪对海岸线侵蚀和增生行为响应的直观理论描述:即海岸线位置通常反映了波浪时间序列的加权移动平均值。模型-卷积等价也为解释、评估和构建数据驱动的机器学习/深度学习(ML/DL)模型提供了概念基础,这些模型使用卷积从数据中提取特征,然后将其应用于预测(例如卷积神经网络(cnn))。最后,我们的研究结果为未来理解波浪驱动的海岸线变化提供了一种方法学途径(基于傅里叶变换),可用于解释波浪和海岸线变化过程频谱之间的一致性,并构建更具计算效率和有效性的海岸线建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Equilibrium Shoreline Models Just Convolutions?

Yes. Equilibrium shoreline models, which simulate wave-driven cross-shore erosion and accretion, are mathematically equivalent to a discrete convolution (i.e., a weighted, moving average) of a time series of wave-forcing conditions with a parameterized memory-decay kernel function. The direct equivalence between equilibrium shoreline models and convolutions reveals key theoretical aspects of equilibrium behavior. Convolutions (representing quasi-low-pass filter operations) provide an intuitive theoretical description of shoreline erosion and accretion behavior in response to waves: that is, shoreline position often mirrors the weighted moving average of wave time series. Model-convolution equivalence also provides a conceptual basis to interpret, evaluate, and construct data-driven Machine-Learning/Deep-Learning (ML/DL) models that use convolutions to extract features from data and then apply them for prediction (e.g., Convolutional Neural Networks (CNNs)). Finally, our findings provide a methodological pathway (based on Fourier transforms) for future understanding of wave-driven shoreline change, which can be used to interpret the coherence between the frequency spectrum of the processes of waves and shoreline change and construct more computationally efficient and effective shoreline-modeling approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信