{"title":"铬鞣皮革与微生物群落:具有生物降解潜力和铬耐受性的分类群鉴定","authors":"Manuela Bonilla-Espadas, Irene Lifante-Martínez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís, Marcelo Bertazzo, María-José Bonete","doi":"10.1111/1758-2229.70134","DOIUrl":null,"url":null,"abstract":"<p>Chromium-tanned leather waste poses significant environmental challenges due to its resistance to degradation and heavy metal content. This study investigates the potential of naturally selected microbial consortia to initiate the degradation of chromium-tanned leather and identifies key bacterial genera capable of tolerating chromium and producing enzymes relevant to collagen breakdown. A novel multidisciplinary approach combining gravimetric assays, metagenomic sequencing, and scanning electron microscopy (SEM) was applied to characterise both microbial composition and degradation dynamics. Dominant genera such as <i>Bacillus</i>, <i>Microbacterium</i>, and <i>Acinetobacter</i> were associated with collagen degradation and metal tolerance, with <i>Bacillus</i>-rich communities showing the most pronounced mass loss (up to 3%). SEM analysis revealed the formation of robust biofilms and extensive matrix disruption, indicating enzymatic activity and structural breakdown of the leather. The formation of exopolysaccharide-rich biofilms was found to be critical for microbial adhesion and biodegradation efficacy. These findings provide initial insights into microbial mechanisms involved in the degradation of chromium-tanned leather and suggest potential applications for microbial consortia in future sustainable leather waste management strategies.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70134","citationCount":"0","resultStr":"{\"title\":\"Chromium-Tanned Leather and Microbial Consortia: Identification of Taxa With Biodegradation Potential and Chromium Tolerance\",\"authors\":\"Manuela Bonilla-Espadas, Irene Lifante-Martínez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís, Marcelo Bertazzo, María-José Bonete\",\"doi\":\"10.1111/1758-2229.70134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chromium-tanned leather waste poses significant environmental challenges due to its resistance to degradation and heavy metal content. This study investigates the potential of naturally selected microbial consortia to initiate the degradation of chromium-tanned leather and identifies key bacterial genera capable of tolerating chromium and producing enzymes relevant to collagen breakdown. A novel multidisciplinary approach combining gravimetric assays, metagenomic sequencing, and scanning electron microscopy (SEM) was applied to characterise both microbial composition and degradation dynamics. Dominant genera such as <i>Bacillus</i>, <i>Microbacterium</i>, and <i>Acinetobacter</i> were associated with collagen degradation and metal tolerance, with <i>Bacillus</i>-rich communities showing the most pronounced mass loss (up to 3%). SEM analysis revealed the formation of robust biofilms and extensive matrix disruption, indicating enzymatic activity and structural breakdown of the leather. The formation of exopolysaccharide-rich biofilms was found to be critical for microbial adhesion and biodegradation efficacy. These findings provide initial insights into microbial mechanisms involved in the degradation of chromium-tanned leather and suggest potential applications for microbial consortia in future sustainable leather waste management strategies.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70134\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70134","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chromium-Tanned Leather and Microbial Consortia: Identification of Taxa With Biodegradation Potential and Chromium Tolerance
Chromium-tanned leather waste poses significant environmental challenges due to its resistance to degradation and heavy metal content. This study investigates the potential of naturally selected microbial consortia to initiate the degradation of chromium-tanned leather and identifies key bacterial genera capable of tolerating chromium and producing enzymes relevant to collagen breakdown. A novel multidisciplinary approach combining gravimetric assays, metagenomic sequencing, and scanning electron microscopy (SEM) was applied to characterise both microbial composition and degradation dynamics. Dominant genera such as Bacillus, Microbacterium, and Acinetobacter were associated with collagen degradation and metal tolerance, with Bacillus-rich communities showing the most pronounced mass loss (up to 3%). SEM analysis revealed the formation of robust biofilms and extensive matrix disruption, indicating enzymatic activity and structural breakdown of the leather. The formation of exopolysaccharide-rich biofilms was found to be critical for microbial adhesion and biodegradation efficacy. These findings provide initial insights into microbial mechanisms involved in the degradation of chromium-tanned leather and suggest potential applications for microbial consortia in future sustainable leather waste management strategies.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.